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dm70.1 Extensions to generate, extended: corrections

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk

Abstract: Four egen functions published in Cox (1999) are corrected; three so that they work properly with long variable lists,
and one so that if restrictions work properly.

Keywords: egen, data management, medians.

A previous insert (Cox 1999) described 24 extra functions for egen. This insert contains corrections for four of those.

First, eqany, neqany and tag now work properly when supplied with long variable lists. With each program, as previously
published, labeling the variable produced with a list of the variables supplied as arguments would fail with long lists.

Second, rmed now works correctly when issued with an if restriction. Previously, with an if restriction either all or none
of the observations were used, depending on whether or not the first observation was selected.

Acknowledgment

I am grateful to Benoit Dulong and Michael Blasnik for alerting me to these problems.

References
Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9–17. Reprinted in Stata Technical Bulletin Reprints, vol. 9,

pp. 34–45.

dm80.1 Update to changing numeric variables to string

Nicholas J. Cox, University of Durham, UK, n.j.cox@durham.ac.uk
Jeremy B. Wernow, Stata Corporation, jwernow@stata.com

Abstract: The command tostring introduced by Cox and Wernow (2000) has been revised to trap any misguided use of a
string format in conversion.

Keywords: string variables, numeric variables, data types, data management.

tostring (Cox and Wernow 2000) is a command for changing numeric variables to string. Optionally, users may select a
format to use in conversion, which is used as an argument to Stata’s string( ) function (see [U] 16.3.5 String functions). Such
a format should be numeric. For example, the option format(%7.2f) specifies that numbers should be rounded to 2 decimal
places before conversion to string. However, a user inadvertently specifying a string format would find that the resulting variable
would always be an empty string. This is at best a misfeature; hence calls to format( ) with a string format are now trapped
with an error message. The help file has also been revised to make this issue clearer.

Acknowledgment

We are grateful to Kit Baum for alerting us to this problem.

References
Cox, N. J. and J. B. Wernow. 2000. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8–12.

dm81 Utility for time series data

Christopher F. Baum, Boston College, baum@bc.edu
Vince Wiggins, Stata Corporation, vwiggins@stata.com

Abstract: A program entitled tsmktim is described which makes the creation of time variables more convenient.

Keywords: time series, calendar, time variables.

Syntax

tsmktim newtimevar , start(date literal)
�
sequence(varname)

�
The tsmktim command provides a convenient way to generate the appropriate tsset command if you do not already have a time variable in the data.
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Options

start(date literal) is required and specifies the starting date for the first observation in the dataset. date literal takes forms
such as 1964, 1999m1, 1960q1, 12jan1985, and so on, depending on whether the data is monthly, quarterly, daily, and
so on; see [U] 27 Commands for dealing with dates for more on how to specify dates.

sequence(varname) specifies that varname contains an integer variable that specifies the sequence of the observations. This
allows gaps to be specified for the time variable. If the values of varname are not sequential, the resulting time variable
will have gaps.

Note that the start date specified in start() is taken to be the date of the value of the sequence() variable in the first
observation. If that value is missing, then the date from start() is associated with a value of 1 for the sequence() variable.

Description

tsmktim creates a Stata time variable, newtimevar, with an appropriate format for yearly, twice yearly, quarterly, monthly,
weekly or daily data, and executes tsset to use that variable as the time specifier. Note that the data must be ordered by time
before issuing tsmktim.

If the sequence() option is not specified, the data are assumed to have no gaps and are sequential in the periodicity of
date literal, that is, one quarter after another, or one month after another, with no gaps.

Examples

Assume the following data:

x

--

44

21

15

77

.

.

.

Then

. tsmktim mytime, start(1977q2)

will produce

x mytime

-- ------

44 1977q2

21 1977q3

15 1977q4

77 1978q1

. .

. .

. .

while

. tsmktim mytime, start(29dec1948)

will produce

x mytime

-- ---------

44 29dec1948

21 30dec1948

15 31dec1948

77 01jan1949

. .

. .

. .

and

. tsmktim mytime, start(29dec1948) sequence(myseq)
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will produce

x myseq mytime

-- ----- ---------

44 10 29dec1948

21 12 31dec1948

15 13 01jan1949

77 23 11jan1949

. . .

. . .

. . .

Saved results

tsmktim saves the items returned by tsset in r().

sbe19.2 Update of tests for publication bias in meta-analysis

Thomas J. Steichen, RJRT, steicht@rjrt.com

Abstract: Enhancements, changes, and a new option for metabias are described.

Keywords: publication bias, meta-analysis.

This insert documents enhancements and changes to metabias and provides the syntax needed to use a new feature. A full
description of the method and of the operation of the original command and options are given in Steichen (1998). A few revisions
were documented later in Steichen et al. 1998. This updated program does not change the implementation of the underlying
statistical methodology or modify the original operating characteristics of the program; rather, it follows the syntax changes of
Stata version 6.0.

New option

gweight requests that the graphic symbols representing the data in the plot be sized proportional to the inverse variance.

Description

The primary purpose of this version is to revise metabias to meet and to exploit syntax changes in Stata version 6.0. In
addition, some minor deficiencies in the previous implementation have been corrected.

First, metabias previously failed to allow a stratified Egger analysis to report a result for the remaining usable strata when
one or more strata had undefined slopes, instead it reported a missing overall estimate. Such a limitation is not necessary and
has been fixed.

Second, option gweight has been added to allow the graphic symbols to be sized according to the data point’s inverse
variance weight in the optional funnel plot.

Finally, saved results are additionally returned in r(). They are documented below.

Saved Results

The system S # macros are unchanged. In addition, the saved results are returned in r(). Specifically, metabias saves:

S 1 r(k) number of studies
S 2 r(score) Begg’s score
S 3 r(score sd) standard deviation of Begg’s score
S 4 r(Begg p) Begg’s p value
S 5 r(Begg pcc) Begg’s p, continuity corrected
S 6 r(Egger bc) Egger’s bias coefficient
S 7 r(Egger p) Egger’s p value
S 8 r(effect) overall effect (log scale)

References
Steichen, T. J. 1998. sbe19: Tests for publication bias in meta-analysis. Stata Technical Bulletin 41: 9–15. Reprinted in Stata Technical Bulletin

Reprints vol. 7, pp. 125–133.

Steichen, T. J., M. Egger, and J. Sterne. 1998. sbe19.1: Tests for publication bias in meta-analysis. Stata Technical Bulletin 44: 3–4. Reprinted in
Stata Technical Bulletin Reprints vol. 8, pp. 84–85.
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sbe38 Haplotype frequency estimation using an EM algorithm and log-linear modeling

Adrian Mander, MRC Biostatistics Unit, Cambridge, UK, adrian.mander@mrc-bsu.cam.ac.uk

Abstract: This function estimates allele/haplotype frequencies under a log-linear model when phase is unknown. Different
log-linear models are compared using a likelihood-ratio test allowing tests for linkage disequilibrium and disease association.
These tests can be adjusted for possible confounders in a stratified analysis.

Keywords: Haplotypes, alleles, association studies, stratified analysis, phase unknown, log-linear modeling.

Syntax

hapipf varlist
�
using exp

� �
if exp

� �
, ldim(varlist) display ipf(str) start known

phase(varname) acc(#) ipfacc(#) nolog model(#) lrtest(#,#)

convars(str) confile(str)
�

Description

This function calculates allele/haplotype frequencies using log-linear modeling embedded within an EM algorithm. The
EM algorithm handles the phase uncertainty and the log-linear modeling allows testing for linkage disequilibrium and disease
association. These tests can be controlled for confounders using a stratified analysis specified by the log-linear model. The
log-linear model can also model the relationship between loci and hence can group similar haplotypes.

The log-linear model is fitted using iterative proportional fitting which is implemented in the ipf command introduced in
Mander (2000). Note that before hapipf can execute, the ipf command must be installed. This algorithm can handle very large
contingency tables and converges to maximum likelihood estimates even when the likelihood is badly behaved.

The varlist consists of paired variables representing the alleles at each locus. If phase is known, then the pairs are the
genotypes. When phase is unknown the algorithm assumes Hardy–Weinberg Equilibrium, so models are based on chromosomal
data and not genotypic data.

Options

ldim(varlist) specifies the variables that determine the dimension of the contingency table. By default the variables contained
in the ipf option define the dimension.

display specifies whether the expected and imputed haplotype frequencies are shown on the screen.

ipf(str) specifies the log-linear model. It requires special syntax of the form l1*l2+l3. This model makes the third locus
independent of the first two and includes the interaction between the first and second locus.

start specifies that the starting posterior weights of the EM algorithm are chosen at random.

known specifies that phase is known.

phase(varname) specifies a variable that contains 1’s where phase is known and 0’s where phase is unknown.

acc(#) specifies the convergence criteria based on the log likelihood.

ipfacc(#) specifies the convergence criteria for the iterative proportional fitting algorithm.

nolog specifies whether the log likelihood is displayed at each iteration.

model(#) specifies a label for the log-linear model being fitted. This label is used in the lrtest option.

lrtest(#,#) performs a likelihood-ratio test using two models that have been labeled by the model option.

convars(str) specifies a list of variables in the constraints file.

confile(str) specifies the name of the constraints file.

Examples

Data are taken from Sham (1998) that consist of two loci (a and b), case–control status (D) and one stratifying variable
(S). The first few lines of this dataset are shown below.
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a1 a2 b1 b2 D S

1. 1 2 1 1 0 0

2. 1 2 2 2 0 0

3. 2 2 1 2 1 0

4. 2 2 1 2 0 0

5. 1 1 1 2 1 0

6. 1 1 1 2 1 1

7. 1 2 2 2 1 0

8. 1 2 1 1 1 0

9. 1 2 1 1 1 0

Each line represents one subject. When D = 1, the subject is a case and when D = 0, the subject is a control. Each locus
contains pairs of alleles, for locus a these are a1 and a2. For example, subject 1 has alleles 1 and 2 at locus a. If phase is
known, then the ordered genotype would be 1=2.

If phase is known, the association test between one of the loci and the disease status is the chi-squared test of association
in a contingency table. When phase is unknown, the contingency table is not observed, so a model of independence and the
saturated model are compared using the likelihood-ratio test. Using the notation first introduced by Wilkinson and Rogers (1973),
the independence model is l1+D where l1 is the locus and D is the case–control variable and the saturated model is l1*D. The
commands to do this analysis are

. hapipf a1 a2, ipf(l1*D) model(0)

. hapipf a1 a2, ipf(l1+D) model(1) lrtest(0,1)

The varlist specifies that the alleles at locus a are used and corresponds to locus 1 in the ipf option.

The test for linkage disequilibrium between two loci is very similar to the test of association between locus and disease
status. The models to compare are l1*l2 and l1+l2.

. hapipf a1 a2 b1 b2, ipf(l1*l2) model(0)

. hapipf a1 a2 b1 b2, ipf(l1+l2) model(1) lrtest(0,1)

Here loci a and b correspond to loci 1 and 2, respectively, in the ipf option.

To obtain the expected haplotype frequencies in the l1*l2 model requires the display option.

. hapipf a1 a2 b1 b2, ipf(l1*l2) display

Haplotype Frequency Estimation by EM algorithm

----------------------------------------------

No. loci = 2

Log-Likelihood = -330.3559939995067

Df = 0

No. parameters = 4

No. cells = 4

Imputed Frequencies

Haplo freq eprob

1.1 20.150157 .06143341

1.2 116.84984 .35624952

2.1 171.84984 .52393245

2.2 19.150157 .05838463

Expected Frequencies

Haplo freq eprob

1.1 20.150568 .06143466

1.2 116.84943 .35624828

2.1 171.84943 .52393118

2.2 19.150568 .05838588

The haplotypes are listed under the variable Haplo and loci are separated by a dot. For a saturated model, the imputed and
expected frequencies are the same. For models that are not saturated, the expected frequencies obey the log-linear model. The
expected frequencies can be saved as a Stata datafile by the using option and this datafile can be used for calculating odds
ratios using tabodds.

As with normal case–control studies, there is a possibility that the relationship between haplotype/locus and disease is
confounded by another variable (S). A solution is to perform a stratified analysis using the confounder as the stratifying variable
and assuming a common odds model. To test whether this variable is an effect modifier compare the model l1*l2*S*D to
l1*l2*S+l1*l2*D+S*D. The second model assumes that the odds ratios are the same between strata.

. hapipf a1 a2 b1 b2, ipf(l1*l2*S*D) model(0)

. hapipf a1 a2 b1 b2, ipf(l1*l2*S+l1*l2*D+S*D) model(1) lrtest(0,1)
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As there are four possible haplotypes, there are three odds ratios per stratum, which gives three degrees of freedom for the
effect modification test.

Grouping haplotypes

For two biallelic loci there are four possible haplotypes. If there is some a priori reason that the association is due to
only one of the haplotypes, then the effect modification test discussed previously will have lower power than one which groups
the other three haplotypes as the comparison group. The grouping allows only one odds ratio per stratum and hence a one
degree-of-freedom test. When phase is unknown, the grouping must be performed within the EM algorithm using a constrained
log-linear model because the haplotypes are not observed. If the phase was known, this grouping is performed before running
hapipf.

The relationship between the two odds ratios can be specified by using a constrained log-linear model. The constrained
log-linear model uses constraint files and are explained in Mander (2000).

The one degree of freedom test of effect modification is the likelihood-ratio test comparing the common odds ratio model
and the model where the odds ratios differ. The base model is L 1*L 2*S+S*D and the L 1*L 2*D margin is fit using the
constraint files. The file (strata1.dta) below is the constraint file for the common-odds model. Note that only one odds ratio
is freely estimated and all the cells in the L 1*L 2*D margin are specified.

l1 l2 D Ifreq

1. 1 1 0 1

2. 1 1 1 1

3. 1 2 0 1

4. 1 2 1 1

5. 2 1 0 1

6. 2 1 1 1

7. 2 2 0 1

8. 2 2 1 .

The file (strata2.dta) below is the constraint file for the effect modification for one specific haplotype 2:2. All the cells
in the L 1*L 2*D*S margin are specified and two odds ratios are allowed, the base model is exactly the same.

l1 l2 D Ifreq S

1. 1 1 0 1 0

2. 1 1 0 1 1

3. 1 1 1 1 0

4. 1 1 1 1 1

5. 1 2 0 1 0

6. 1 2 0 1 1

7. 1 2 1 1 0

8. 1 2 1 1 1

9. 2 1 0 1 0

10. 2 1 0 1 1

11. 2 1 1 1 0

12. 2 1 1 1 1

13. 2 2 0 1 0

14. 2 2 0 1 1

15. 2 2 1 . 0

16. 2 2 1 . 1

The following commands obtain the likelihood for both models.

. hapipf a1 a2 b1 b2, ipf(S*D+l1*l2*S) confile(strata1) convars(l1 l2 D)

. hapipf a1 a2 b1 b2, ipf(S*D+l1*l2*S) confile(strata2) convars(l1 l2 D S)

From the output, the likelihood-ratio test statistic is :82741365 on one degree of freedom which is not significant at the 5% level.

Additional information

There are numerous models that the log-linear model can specify, and a detailed description of these can be found in Mander
and Clayton (2000).

References
Mander, A. P. 2000. sbe34: Log-linear modeling using iterative proportional fitting. Stata Technical Bulletin 55: 10–12.

Mander, A. P. and D. G. Clayton. 2000. Haplotype analysis in population-based association studies using Stata. In preparation.

Sham, P. 1998. Statistics in Human Genetics. London: Arnold.

Wilkinson, G. N. and C. E. Rogers. 1973. Symbolic description of factorial models for analysis of variance. Applied Statistics 22: 392–399.
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sbe39 Nonparametric trim and fill analysis of publication bias in meta-analysis

Thomas J. Steichen, RJRT, steicht@rjrt.com

Abstract: This insert describes metatrim, a command implementing the Duval and Tweedie nonparametric “trim and fill”
method of accounting for publication bias in meta-analysis. Selective publication of studies, which may lead to bias in
estimating the overall meta-analytic effect and in the inferences derived, is of concern when performing a meta-analysis.
If publication bias appears to exist, then it is desirable to consider what the unbiased dataset might look like and then
to reestimate the overall meta-analytic effect after any apparently “missing” studies are included. Duval and Tweedie’s
“nonparametric ‘trim and fill’ method” is an approach designed to meet these objectives.

Keywords: meta-analysis, publication bias, nonparametric, data augmentation.

Syntax

metatrim ftheta f se theta j var theta g j exp(theta) ll ul
�
cl
�g �if exp

� �
in range

�
�
, fvar j cig reffect print estimat(frun j linear j quadraticg) eform graph

funnel level(#) idvar(varname) save(filename
�
, replace

�
) graph options

�
where fa j b j :::g means choose one and only one of fa; b; :::g.

Description

metatrim performs the Duval and Tweedie (2000) nonparametric “trim and fill” method of accounting for publication bias
in meta-analysis. The method, a rank-based data-imputation technique, formalizes the use of funnel plots, estimates the number
and outcomes of missing studies, and adjusts the meta-analysis to incorporate the imputed missing data. The authors claim that
the method is effective and consistent with other adjustment techniques. As an option, metatrim provides a funnel plot of the
filled data.

The user provides the effect estimate, theta, to metatrim as a log risk-ratio, log odds-ratio, or other direct measure of
effect. Along with theta, the user supplies a measure of theta’s variability (that is, its standard error, se theta, or its variance,
var theta). Alternatively, the user may provide the exponentiated form, exp(theta), (that is, a risk ratio or odds ratio) and its
confidence interval, (ll, ul).

The funnel plot graphs theta versus se theta for the filled data. Imputed observations are indicated by a square around the
data symbol. Guide lines to assist in visualizing the center and width of the funnel are plotted at the meta-analytic effect estimate
and at pseudo-confidence-interval limits about that effect estimate (that is, at theta� z� se theta, where z is the standard normal
variate for the confidence level specified by option level()).

Options

var indicates that var theta was supplied on the command line instead of se theta. Option ci should not be specified when
option var is specified.

ci indicates that exp(theta) and its confidence interval, (ll, ul), were supplied on the command line instead of theta and se theta.
Option var should not be specified when option ci is specified.

reffect specifies an analysis based on random-effects meta-analytic estimates. The default is to base calculations on fixed-effects
meta-analytic estimates.

print requests that the weights used in the filled meta-analysis be listed for each study, together with the individual study
estimates and confidence intervals. The studies are labeled by name if the idvar() option is specified, or by number
otherwise.

estimat(frun j linear j quadraticg) specifies the estimator used to determine the number of points to be trimmed in
each iteration. The user is cautioned that the run estimator, R0, is nonrobust to an isolated negative point, and that the
quadratic estimator, Q0, may not be defined when the number of points in the data set is small. The linear estimator,
L0, is stable in most situations and is the default.

eform requests that the results in the final meta-analysis, and in the print option, be reported in exponentiated form. This is
useful when the data represent odds ratios or relative risks.

graph requests that point estimates and confidence intervals be plotted. The estimate and confidence interval in the graph are
derived using fixed- or random-effects meta-analysis, as specified by option reffect.
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funnel requests a filled funnel graph be displayed showing the data, the meta-analytic estimate, and pseudo confidence-interval
limits about the meta-analytic estimate. The estimate and confidence interval in the graph are derived using fixed or
random-effects meta-analysis, as specified by option reffect.

level(#) specifies the confidence level percent for the pseudo confidence intervals; the default is 95%.

idvar(varname) indicates the character variable used to label the studies.

save(filename[, replace]) saves the filled data in a separate Stata data file. The filename is assumed to have extension .dta

(an extension should not be provided by the user). If filename does not exist, it is created. If filename exists, an error will
occur unless replace is also specified. Only three variables are saved: a study id variable and two variables containing
the filled theta and se theta values. The study id variable, named id in the saved file, is created by metatrim; but when
option idvar() is specified, it is based on that id variable. The filled theta and se theta variables are named filled and
sefill in the saved file.

graph options are those allowed with graph, twoway, except ylabel(), symbol(), xlog, ytick and gap are not recognized by
graph. For funnel, the default graph options include connect(lll..), symbol(iiioS), and pen(35522) for displaying
the meta-analytic effect, the pseudo confidence interval limits (two lines), and the data points, respectively.

Specifying input variables

The individual effect estimates (and a measure of their variability) can be provided to metatrim in any of three ways:

1. The effect estimate and its corresponding standard error (the default method):

. metatrim theta se theta ...

2. The effect estimate and its corresponding variance (note that option var must be specified):

. metatrim theta var theta, var ...

3. The risk (or odds) ratio and its confidence interval (note that option ci must be specified):

. metatrim exp(theta) ll ul, ci ...

where exp(theta) is the risk (or odds) ratio, ll is the lower limit and ul is the upper limit of the risk ratio’s confidence
interval.

When input method 3 is used, cl is an optional input variable that contains the confidence level of the confidence interval
defined by ll and ul:

. metatrim exp(theta) ll ul cl, ci ...

If cl is not provided, metatrim assumes that a 95% confidence level was reported for each study. cl allows the user to
combine studies with diverse or non-95% confidence levels by specifying the confidence level for each study not reported
at the 95% level. Note that option level() does not affect the default confidence level assumed for the individual studies.
Values of cl can be provided with or without a decimal point. For example, 90 and .90 are equivalent and may be mixed
(i.e., 90, .95, 80, .90, etc.). Missing values within cl are assumed to indicate a 95% confidence level.

Note that data in binary count format can be converted to the effect format used in metatrim by use of program metan

(Bradburn et al. 1998). metan automatically creates and adds variables for theta and se theta to the raw dataset, naming them
ES and seES. These variables can be provided to metatrim using the default input method.

Explanation

Meta-analysis is a popular technique for numerically synthesizing information from published studies. One of the many
concerns that must be addressed when performing a meta-analysis is whether selective publication of studies could lead to bias
in estimating the overall meta-analytic effect and in the inferences derived from the analysis. If publication bias appears to exist,
then it is desirable to consider what the unbiased dataset might look like and then to reestimate the overall meta-analytic effect
after any apparently “missing” studies are included. Duval and Tweedie’s “nonparametric ‘trim and fill’ method” is designed to
meet these objectives and is implemented in this insert.

An early, visual approach used to assess the likelihood of publication bias and to provide a hint of what the unbiased data
might look like was the funnel graph (Light and Pillemer 1984). The funnel graph plotted the outcome measure (effect size) of
the component studies against the sample size (a measure of variability). The approach assumed that all studies in the analysis
were estimating the same effect. Therefore, the effect estimates should be distributed about the unknown true effect level and
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their spread should be proportional to their variances. This suggested that, when plotted, small studies should be widely spread
about the average effect, and the spread should narrow as sample sizes increase, resulting in a symmetric, funnel-shaped graph.
If the graph revealed a lack of symmetry about the average effect (especially if small, negative studies appeared to be absent)
then publication bias was assumed to exist.

Evaluation of a funnel graph was a very subjective process, with bias—or lack of bias—residing in the eye of the beholder.
Begg and Mazumdar (1994) noted this and observed that the presence of publication bias induced skewness in the plot and a
correlation between the effect sizes and their variances. They proposed that a formal test of publication bias could be constructed
by examining this correlation. More recently, Egger et al. 1997 proposed an alternative, regression-based test for detecting
skewness in the funnel plot and, by extension, for detecting publication bias in the data. Their numerical measure of funnel plot
asymmetry also constitutes a formal test of publication bias. Stata implementations of both the Begg and Mazumdar procedure
and the Egger et al. procedure were provided in metabias (Steichen 1998; Steichen et al. 1998).

However, neither of these procedures provided estimates of the number or characteristics of the missing studies, and neither
provided an estimate of the underlying (unbiased) effect. There exist a number of methods to estimate the number of missing
studies, model the probability of publication, and provide an estimate of the underlying effect size. Duval and Tweedie list
some of these and note that all “are complex and highly computer-intensive to run” and, for these reasons, have failed to find
acceptance among meta-analysts. They offer their new method as “a simple technique that seems to meet many of the objections
to other methods.”

The following sections paraphrase some of the mathematical development and discussion in the Duval and Tweedie paper.

Estimators of the number of suppressed studies

Let (Yj ; v2j ); j = 1; : : : ; n; be the estimated effect sizes and within-study variances from n observed studies in a meta-
analysis, where all such studies attempt to estimate a common global “effect size” �. Define the random-effects (RE) model
used to combine the Yj as

Yj = �+ �j + "j

where �j � N(0; �2) accounts for heterogeneity between studies, and "j � N(0; �2j ) is the within-study variability of study j.
For a fixed-effects (FE) model, assume �2 = 0.

Further, in addition to n observed studies, assume that there are k0 relevant studies that are not observed due to publication
bias. Both the value of k0, that is, the number of unobserved studies, and the effect sizes of these unobserved studies are
unknown and must be estimated.

Now, for any collection Xi, i = 1; : : : ; N of random variables, each with a median of zero and sign generated according
to an independent set of Bernoulli variables taking values �1 and 1, let ri denote the rank of jXij and

W+
N =

X
Xi>0

ri

be the sum of the ranks associated with positive Xi. Then W+
N has a Wilcoxon distribution.

Assume that among these N random variables, k0 were suppressed, leaving n observed values. Furthermore, assume that
the suppression has taken place in such a way that the k0 values of the Xi with the most extreme negative ranks have been
suppressed. (Note: Duval and Tweedie call this their key assumption and present it italicized, as done here, for emphasis. Further,
they label the model for an overall set of studies defined in this way as a suppressed Bernoulli model and state that it might be
expected to lead to a truncated funnel plot.)

Rank again the n observed jXij as r�i running from 1 to n. Let � � 0 denote the length of the rightmost run of ranks
associated with positive values of the observed Xi; that is, if h is the index of the most negative of the Xi and r�h is its absolute
rank, then � = n� r�h. Define the “trimmed” rank test statistic for the observed n values as

Tn =
X
Xi>0

r�i

Note that though the distributions of � and Tn depend on k0, the dependence is omitted in this notation. Based on these
quantities, define three estimators of k0, the number of suppressed studies:

R0 = � � 1;

L0 =
4Tn � n(n+ 1)

2n� 1
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and
Q0 = n� 1=2�

p
2n2 � 4Tn + 1=4

Duval and Tweedie provide the mean and variance of each estimator as follows (the reader should refer to the original paper
for the derivation):

E[R0] = k0; var[R0] = 2k0 + 2

E[L0] = k0 � k20=(2n� 1); var[L0] = 16 var(Tn)=(2n� 1)
2

where
var(Tn) = (n(n+ 1)(2n+ 1) + 10k30 + 27k20 + 17k0 � 18nk20 � 18nk0 + 6n2k0)=24

and

E[Q0] � k0 +
2 var(Tn)

((n� 1=2)2 � k0(2n� k0 � 1))3=2
; var[Q0] � 4 var(Tn)

(n� 1=2)2 � k0(2n� k0 � 1)

The authors also report that for n large and k0 of a smaller order than n, then asymptotically:

E[R0] = k0;

E[L0] � k0;

E[Q0] � k0 + 1=6;

var[R0] = o(n);

var[L0] � n=3;

var[Q0] � n=3:

These results suggest that L0 and Q0 should have similar behavior, but the authors report that in practice Q0 is often larger,
sometimes excessively so. They also note that L0 generally has smaller mean square error than Q0 when k0 � n=4� 2.

Duval and Tweedie remark that the R0 run estimator is rather conservative and nonrobust to the presence of a relatively
isolated negative term at the end of the sequence of ranks. They suggest that the estimators based on Tn seem more robust to
such a departure from the suppressed Bernoulli hypothesis. They also note that the Q0 quadratic estimator is defined only when
Tn < n2=2 + 1=16, and that simulations show this to be violated quite frequently when the number of studies, n, is small and
when the number of suppressed studies, k0, is large relative to n. These concerns leave the L0 linear estimator as the best all
around choice.

Because only whole studies can be trimmed, the estimators are rounded in practice to the nearest nonnegative integer, as
follows:

R+
0 = maxf0; R0g

L+
0 =

�
max

�
0; L0 +

1

2

��

Q+
0 =

�
max

�
0; Q0 +

1

2

��
where [x] is the integer part of x.

The Iterative trim and fill algorithm

Because the global “effect size” � is unknown, the number and position of any missing studies is correlated with the
true value of �. Therefore, Duval and Tweedie developed an iterative algorithm to estimate these values simultaneously. The
algorithm can be used with any of the three estimators of k0 defined in the previous section (the metatrim program allows
the user to specify which one is to be used through the estimat() option). Likewise, either a fixed-effects or random-effects
meta-analysis model can be used to estimate b�(l) within each iteration (l) of the algorithm (the default model in metatrim is
fixed effects, but random effects is used when option reffect is specified). Note that the meta program of Sharp and Sterne
(1997, 1998) is called by metatrim to carry out the meta-analysis calculations.

The algorithm proceeds as follows:

1. Starting with values Yi, estimate b�(1) using the chosen meta-analysis model. Construct an initial set of centered values

Y
(1)

i = Yi � b�(1); i = 1; : : : ; n

and estimate bk(1)0 using the chosen estimator for k0 applied to the set of values Y (1)

i .
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2. Let l be the current step number. Remove bk(l�1)0 values from the right end of the original Yi and estimate b�(l) based on

this trimmed set of n� bk(l�1)0 values: fY1; : : : ; Yn�bk(l�1)
0

g: Construct the next set of centered values

Y
(l)
i = Yi � b�(l); i = 1; : : : ; n

and estimate bk(l)0 using the chosen estimator for k0 applied to the set of values Y (l)
i .

3. Increment l and repeat step 2 until an iteration L where bk(L)0 = bk(L�1)0 . Assign this common value to be the estimated

value bk0. Note that in this iteration it will also be true that b�(L) = b�(L�1).

4. Augment (that is, “fill”) the dataset Y with the bk0 imputed symmetric values

Y �

j = 2b�(L) � Yn�j+1; j = 1; : : : ;bk0
and imputed standard errors

��j = �n�j+1; j = 1; : : : ;bk0
Estimate the “trimmed and filled” value of � using the chosen meta-analysis method applied to the full augmented dataset
fY1; : : : ; Yn; Y �

1 ; : : : ; Y
�bk0g.

Conceptually, this algorithm starts with the observed data, iteratively trims (that is, removes) extreme positive studies from
the dataset until the remaining studies do not show detectable deviation from symmetry, fills (that is, imputes into the original
dataset) studies that are left-side mirrored reflections (about the center of the trimmed data) of the trimmed studies and, finally,
repeats the meta-analysis on the filled dataset to get “trimmed and filled” estimates. Each filled study is assigned the same
standard error as the trimmed study it reflects in order to maintain symmetry within the filled dataset.

Example

The method is illustrated with an example from the literature that examines the association between Chlamydia trachomatis
and oral contraceptive use derived from 29 case–control studies (Cottingham and Hunter 1992). Analysis of these data with the
publication bias tests of Begg and Mazumdar (p = 0.115) and Egger et al. (p = 0.016), as provided in metabias, suggests
that publication bias may affect the data. To examine the potential impact of publication bias on the interpretation of the data,
metatrim is invoked as follows:

. metatrim logor varlogor, reffect funnel var

The random-effects model and display of the optional funnel graph are requested via options reffect and funnel. Option var

is required because the data were provided as log-odds ratios and variances. By default, the linear estimator, L0, is used to
estimate k0, as no other estimator was requested. metatrim provides the following output:

Note: option "var" specified.

Meta-analysis

| Pooled 95% CI Asymptotic No. of

Method | Est Lower Upper z_value p_value studies

-------+----------------------------------------------------

Fixed | 0.655 0.571 0.738 15.359 0.000 29

Random | 0.716 0.595 0.837 11.594 0.000

Test for heterogeneity: Q= 37.034 on 28 degrees of freedom (p= 0.118)

Moment-based estimate of between studies variance = 0.021

Trimming estimator: Linear

Meta-analysis type: Random-effects model

iteration | estimate Tn # to trim diff

----------+--------------------------------------

1 | 0.716 285 5 435

2 | 0.673 305 6 40

3 | 0.660 313 7 16

4 | 0.646 320 7 14

5 | 0.646 320 7 0

Filled

Meta-analysis

| Pooled 95% CI Asymptotic No. of

Method | Est Lower Upper z_value p_value studies

-------+----------------------------------------------------

Fixed | 0.624 0.542 0.705 14.969 0.000 36

Random | 0.655 0.531 0.779 10.374 0.000

Test for heterogeneity: Q= 49.412 on 35 degrees of freedom (p= 0.054)

Moment-based estimate of between studies variance = 0.031
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metatrim first calls program meta to perform and report a standard meta-analysis of the original data, showing both the
fixed- and random-effects results. These initial results are always reported as theta estimates, regardless of whether the data were
provided in exponentiated form.

metatrim next reports the trimming estimator and type of meta-analysis model to be used in the iterative process, then
displays results at each iteration. The estimate column shows the value of b�(l) at each iteration. As expected, its value at
iteration 1 is the same as shown for the random-effects method in the meta-analysis panel, and then decreases in successive
iterations as values are trimmed from the data. Column Tn reports the Tn statistic, column # to trim reports the successive

estimates bk(l)0 and column diff reports the sum of the absolute differences in signed ranks between successive iterations. The
algorithm stops when diff is zero.

metatrim finishes with a call to program meta to report an analysis of the trimmed and filled data. Observe that there
are now 36 studies, composed of the n = 29 observed studies plus the additional bk0 = 7 imputed studies. Also note that the
estimate of b� reported as the random effects pooled estimate for the 36 studies is not the same as the value b�(5) shown in
the fifth (and final) line of the iteration panel. These values usually differ when the random-effects model is used (because the
addition of imputed values change the estimate of �2) but are identical always when the fixed-effects model is used.

In summary, metatrim adds 7 “missing” studies to the dataset, moving the random-effects summary estimate fromb� = 0.716; 95% CI: ( 0.595; 0.837 ) to b� = 0.655; 95% CI: ( 0.531; 0.779 ). The new estimate, though slightly lower, remains
statistically significant; correction for publication bias does not change the overall interpretation of the dataset. Addition of
“missing” studies results in an increased variance between studies, the estimate rising from 0.021 to 0.031, and increased evidence
of heterogeneity in the dataset, p = 0.118 in the observed data versus p = 0.054 in the filled data. As expected, when the
trimmed and filled dataset is analyzed with the publication bias tests of Begg and Mazumdar and Egger et al. (not shown),
evidence of publication bias is no longer observed (p = 0.753 and p = 0.690, respectively).

The funnel plot (Figure 1), requested via the funnel option, graphically shows the final filled estimate of � (as the horizontal
line) and the augmented data (as the points), along with pseudo confidence-interval limits intended to assist in visualizing the
funnel. The plot indicates the imputed data by a square around the data symbol. The filled dataset is much more symmetric than
the original data and the plot shows no evidence of publication bias.

Fil led funnel plot with pseudo 95% confidence l imits
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Figure 1. Funnel plot for analysis of Cottingham and Hunter data.

Additional options that can be specified include print to show the weights, study estimates and confidence intervals for
the filled data set, eform to request that the results be reported in exponentiated form in the final meta-analysis and in the
print option be reported in exponentiated form (this is useful when the data represent odds ratios or relative risks), graph to
graphically display the study estimates and confidence intervals for the filled data set, and save(filename) to save the filled data
in a separate Stata datafile.

Remarks

The Duval and Tweedie method is based on the observation that an unbiased selection of studies that estimate the same
thing should be symmetric about the underlying common effect (at least within sampling error). This implies an expectation that
the number of studies, and the magnitudes of those studies, should also be roughly equivalent both above and below the common
effect value. It is, therefore, reasonable to apply a nonparametric approach to test these assumptions and to adjust the data until
the assumptions are met. The price of the nonparametric approach is, of course, lower power (and a concomitant expectation
that one may under-adjust the data).
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Duval and Tweedie use the symmetry argument in a somewhat roundabout way, choosing to first trim extreme positive
studies until the remaining studies meet symmetry requirements. This makes sense when the studies are subject only to publication
bias, since trimming should preferably toss out the low-weight, but extreme studies. Nonetheless, if other biases affect the data,
in particular if there is a study that is high-weight and extremely positive relative to the remainder of the studies, then the method
could fail to function properly. The user must remain alert to such possibilities.

Duval and Tweedie’s final step—filling in imputed reflections of the trimmed studies—has no effect on the final trimmed
point estimate in a fixed effects analysis but does cause the confidence interval of the estimate to be smaller than that from the
trimmed or original data. One could question whether this “increased” confidence is warranted.

The random-effects situation is more complex, as both the trimmed point estimate and confidence interval width are affected
by filling, with a tendency for the filled data to yield a point estimate between the values from the original and trimmed data.
When the random-effects model is used, the confidence interval of the filled data is typically smaller than that of either the
trimmed or original data.

Experimentation suggests that the Duval and Tweedie method trims more studies than may be expected; but because of
the increase in precision induced by the imputation of studies during filling, changes in the “significance” of the results occur
less often than expected. Thus the two operations (trimming, which reduces the point estimate, and filling, which increases the
precision) seem to counter each other.

Another phenomenon noted is a tendency for the heterogeneity of the filled data to be greater than that of the original data.
This suggests that the most likely studies to be trimmed and filled are those that are most responsible for heterogeneity. The
generality of this phenomenon and its impact on the analysis have not been investigated.

Duval and Tweedie provide a reasonable development based on accepted statistics; nonetheless, the number and the
magnitude of the assumptions required by the method are substantial. If the underlying assumptions hold in a given dataset,
then, as with many methods, it will tend to under- rather than over-correct. This is an acceptable situation in my view (whereas
“over-correction” of publication bias would be a critical flaw).

This author presents the program as an experimental tool only. Users must assess for themselves both the amount of
correction provided and the reasonableness of that correction. Other tools to assess publication bias issues should be used in
tandem. metatrim should be treated as merely one of an arsenal of methods needed to fully assess a meta-analysis.

Saved Results

metatrim does not save values in the system S # macros, nor does it return results in r().

Note

The command meta (Sharp and Sterne 1997, 1998) should be installed before running metatrim.
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sbe40 Modeling mortality data using the Lee–Carter model

Duolao Wang, London School of Hygiene and Tropical Medicine, London, UK, duolao.wang@lshtm.ac.uk

Abstract: This article describes the leecart command that fits the Lee–Carter model for mortality forecasting. The Lee–Carter
model has been a very successful approach for long-term mortality projection and widely applied in demographic studies,
as well as actuary. A U.S. mortality dataset is used to illustrate the model estimation.

Keywords: Lee–Carter model, mortality forecasting, singular value decomposition.

The Lee–Carter model

Lee and Carter (1992) proposed a model for forecasting mortality based on the past mortality trends. The model can be
written as follows:

fxt = log(mxt) = ax + bxkt + �xt

where mxt is the observed age-specific death rate (ASDR) at age x during time t; ax, bx, and kt are the model’s parameters,
and �xt is an error term. ax describes the general age shape of the ASDRs while kt is an index of the general level of mortality.
bx coefficients describe the tendency of mortality at age x to change when the general level of mortality (kt) changes.

To estimate the model for a given set of ASDRs (mxt), ordinary least squares can be applied.

The model evidently is underdetermined, which can be seen as follows. Suppose that a; b; k are one solution. Then for
any c, a� bc, b, k + c also must be a solution. It is also clear that if a; b; k are a solution, then a, bc, k/c also are a solution.
Therefore, k is determined only up to a linear transformation, b is determined only up to a multiplicative constant, and a is
determined only up to an additive constant. Lee and Carter proposed to normalize the bx to sum to unity and the kt to sum to
0, which implies that ax are simply the averages over time of the log(mxt).

The model cannot be fitted by ordinary regression methods because there are no given regressors; on each side of the
equation we have only parameters to be estimated and the unknown index kt. However, the singular value decomposition (SVD)
method can be used to find a least squares solution when applied to the matrix of the logarithms of rates after the averages
over time of the (log) age-specific rates have been subtracted (Good 1969). The first right and left vectors and leading value of
SVD, after normalization described above, provides a unique solution. The Stata matrix function matrix svd is an ideal tool to
estimate the parameters in the Lee–Carter model.

Syntax

leecart var year var age var mortality
�
if exp

� �
in range

�
Description

leecart generates three parameter matrices for the Lee–Carter model using the given age-period-specific death rates: ax,
bx, and kt. In addition, it yields a matrix of estimated age-specific mortality rates by year.

Examples

U.S. age-period-specific mortality rates from 1900 to 1995 are used below to demonstrate the use of the leecart command
for the estimation of the Lee–Carter model.

. use leecart

(US Death Rates by Year: 1900-1995)

. describe

Contains data from leecart.dta

obs: 11,520 US Death Rates by Year:

1900-1995

vars: 3 11 Aug 2000 11:11

size: 184,320 (96.4% of memory free)

-------------------------------------------------------------------------------

1. year float %9.0g Year

2. age float %9.0g Age

3. mort float %9.0g Mortality

-------------------------------------------------------------------------------

Sorted by:
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. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

year | 11520 1947.5 27.71251 1900 1995

age | 11520 59.5 34.64132 0 119

mort | 11520 .10559 .2098533 0 2

. list in 1/10

year age mort

1. 1900 0 .145903

2. 1900 1 .037846

3. 1900 2 .01886

4. 1900 3 .013305

5. 1900 4 .010606

6. 1900 5 .007799

7. 1900 6 .005622

8. 1900 7 .004031

9. 1900 8 .003057

10. 1900 9 .002606

. leecart year age m if (age<=5 & year<=1910)

. return list

matrices:

r(mhat) : 6 x 11

r(kt) : 11 x 1

r(bx) : 6 x 1

r(ax) : 6 x 1

. mat list r(ax)

r(ax)[6,1]

ax

a1 -2.0881379

a2 -3.5263281

a3 -4.2174792

a4 -4.5642061

a5 -4.7901406

a6 -5.0804639

. mat list r(bx)

r(bx)[6,1]

bx

b1 -.52505125

b2 2.043322

b3 -.52963006

b4 .00169509

b5 .00732399

b6 .00234019

. mat list r(kt)

r(kt)[11,1]

kt

k1 -.26041863

k2 -.09171974

k3 -.06365677

k4 .00558394

k5 -.02884234

k6 .03205825

k7 -.01836655

k8 .05870308

k9 .11228816

k10 .15596412

k11 .09840768

. mat list r(mhat)

r(mhat)[6,11]

t1 t2 t3 t4 t5 t6

age1 .14207435 .13003127 .12812937 .1235549 .12580853 .12184932

age2 .01727582 .02438612 .02582533 .02975023 .02772939 .03140391

age3 .01691501 .01546924 .01524102 .01469223 .01496257 .01448766

age4 .01042275 .01041977 .01041927 .01041805 .01041866 .01041758

age5 .00832716 .00831687 .00831516 .00831095 .00831304 .00830934

age6 .00621324 .00621569 .0062161 .00621711 .0062166 .00621749

t7 t8 t9 t10 t11

age1 .12511844 .12015653 .11682305 .11417453 .11767756

age2 .02832935 .03316107 .03699816 .04045184 .03596354
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age3 .01487978 .01428464 .01388494 .01356744 .01398739

age4 .01041847 .01041711 .01041616 .01041539 .01041641

age5 .00831241 .00830772 .00830446 .0083018 .0083053

age6 .00621676 .00621788 .00621866 .00621929 .00621846

. clear

. use leecart

(US Death Rates by Year: 1900-1995)

. leecart year age m if (age<=100 & year<=1995)

. return list

matrices:

r(mhat) : 101 x 96

r(kt) : 96 x 1

r(bx) : 101 x 1

r(ax) : 101 x 1

Saved Results

leecart saves the following matrices in r():

r(ax) ax

r(bx) bx

r(kt) kt

r(mhat) estimated age-specific death rates by year
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sg150 Hardy–Weinberg equilibrium test in case–control studies

Jisheng Cui, University of Melbourne, Australia, j.cui@gpph.unimelb.edu.au

Introduction

Cleves (1999) proposed the Stata command genhwi for testing the Hardy–Weinberg equilibrium (HWE) of one sample of
individuals. However, in case–control studies, two samples of individuals are collected; the cases and the controls. Usually the
genotypic counts of controls are under HWE. We modified genhwi to enable it to be applicable to data in case–control studies.
The new command genhwcci is given for testing whether the genotypic counts of the cases are under HWE, given the controls
are under HWE. This test is more powerful than that given by genhwi because data from controls are utilized.

Syntax

genhwcci #AA1 #Aa1 #aa1 #AA2 #Aa2 #aa2
�
, label(genotypes) binvar

�
Description

genhwcci is an immediate command used for estimating allele frequency, genotype frequencies, disequilibrium coefficients,
and the associated standard error for codominant traits or data of completely known genotypes in case–control studies. For both
genotypic counts of cases and controls, it performs asymptotic HWE tests. It also tests the HWE for genotypic counts of cases,
under the assumption that the genotypic counts of controls are under HWE; where #AA1, #Aa1, and #aa1 are the counts for the
AA, Aa and aa of the cases; while #AA2, #Aa2, and #aa2 are the genotypic counts of the controls. This command works for
biallelic loci only.
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Options

label(genotypes) requests that labels are used in the output of the genotype frequency table.

binvar requests that the standard errors from a binomial distribution are reported for each allele frequency. These standard
errors are calculated under the assumption that the population is under HWE. By default, standard errors that do not require
this assumption are reported.

Remarks

genhwcci performs asymptotic tests for HWE for genotypic counts of cases given the controls are under HWE. It also
estimates the disequilibrium coefficient (D) and its standard error for genotypic counts of cases and controls, separately. See
Methods and formulas for details.

Example

Helzlsouer et al. 1998 conducted a case–control study for the association of CYP17 polymorphism and breast cancer, in
which 109 cases and 113 controls were collected. We test the hypotheses whether the cases and controls are under HWE, separately.
Given the controls are under HWE, we test whether the cases are under HWE. An immediate command is used for testing the
HWE.

. genhwcci 41 47 21 37 58 18, label(AA AB BB)

Genotype | Case Control | Total

------------+-------------------------------+-------------

AA | 41 37 | 78

AB | 47 58 | 105

BB | 21 18 | 39

------------+-------------------------------+-------------

total | 109 113 | 222

Case

Allele | Case Frequency Std. Err.

------------+--------------------------------------

A | 129 0.5917 0.0350

B | 89 0.4083 0.0350

------------+--------------------------------------

total | 218 1.0000

------------+--------------------------------------

Estimated disequilibrium coefficient (D) = 0.0260

SE = 0.0232

Hardy-Weinberg Equilibrium Test:

Pearson chi2 (1) = 1.261 Pr= 0.2614

likelihood-ratio chi2 (1) = 1.258 Pr= 0.2620

Exact significance prob = 0.3204

Control

Allele | Control Frequency Std. Err.

------------+--------------------------------------

A | 132 0.5841 0.0318

B | 94 0.4159 0.0318

------------+--------------------------------------

total | 226 1.0000

------------+--------------------------------------

Estimated disequilibrium coefficient (D) = -0.0137

SE = 0.0227

Hardy-Weinberg Equilibrium Test:

Pearson chi2 (1) = 0.360 Pr= 0.5487

likelihood-ratio chi2 (1) = 0.361 Pr= 0.5481

Exact significance prob = 0.6983

Test H0: cases under HWE: (given controls under HWE)

likelihood-ratio chi2 (2) = 1.285 Pr= 0.5260

The label() option is used to label the genotypes in the table. The order of the genotypes is in the same order as given in the
syntax.

For this example, there is no significant evidence that the genotypic counts of cases and controls are not under HWE. Even
given the controls are under HWE, there is still no significant evidence that the cases are not under HWE.
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Methods and formulas

Here we only give the formulas for testing whether the cases are under HWE, given the controls are under HWE, as the
methods for testing one sample has been given by Cleves (1999). The standard error of the disequilibrium coefficient (D) was
not included in the command genhwi, but it is included in the new command genhwcci. Details of the formula can be found
in Weir (1990, 74).

The observed case–control data is shown in the following table, where ni and n0i represent the number of genotypes among
cases and controls, respectively, i = AA;AB;BB. Let �i and �0i represent the probability that a person has genotype i among
cases and controls, respectively. We have

P
i �i = 1 and

P
i �

0

i = 1

Table 1: Observed genotypic counts

Genotype Case Control Total

AA nAA n0AA mAA

AB nAB n0AB mAB

BB nBB n0BB mBB

Total n n0 m

Suppose the controls are randomly selected from the population of interest, which is under HWE. Then the distribution of
genotypes in the population is given by

�0AA = p2; �0AB = 2pq; �0BB = q2 (1)

where p is the allele frequency of A in the population, and q = 1� p.

Under the null hypothesis, that is, the cases are under HWE, the genotype distribution of the cases is also given by (1) as
the controls are assumed to be under HWE. Then the log-likelihood function is given by

L0 = (nAA + n0AA) log(p
2) + (nAB + n0AB) log(2pq) + (nBB + n0BB) log(q

2)

with one parameter p.

Under the alternative hypothesis, that is, cases are not under HWE, the genotype distribution of the cases are �AA, �AB
and �BB , then the log-likelihood function is given by

L1 = nAA log �AA + nAB log �AB + nBB log �BB + n0AA log(p2) + n0AB log(2pq) + n0BB log(q2)

with the three parameters p, �AA and �AB , where the �i sum to one.

To test the null hypothesis versus the alternative hypothesis, we use the statistic �2(L0 �L1), which approximates the �2

distribution with 2 degrees of freedom. The maximum likelihood estimates of p and �i can be obtained from the score functions
of L0 and L1, respectively. More specifically, under the null hypothesis, bp = (2mAA+mAB)=(2m), while under the alternative
hypothesis, bp = (2n0AA + n0AB)=(2n

0), b�AA = nAA=n, b�AB = nAB=n, and b�BB = nBB=n. Then �2(bL0 � bL1) is evaluated
at the above maximum likelihood estimates and compared with the �2 distribution.
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sg151 B-splines and splines parameterized by their values at reference points on the x-axis

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: Two programs are presented for generating a basis of splines in an X-variable, to be used by regression programs
to fit spline models. The first, bspline, generates a basis of Schoenberg B-splines, which avoid the stability problems
associated with plus-functions. The second, frencurv, generates a basis of reference splines, whose parameters in the
regression model are simply values of the spline at reference points on the x-axis. These programs are complementary to
existing spline programs in Stata, and do not supersede them.

Keywords: spline, B-spline, interpolation, quadratic, cubic.

Syntax

bspline

�
newvarlist

� �
if exp

� �
in range

�
, xvar(varname)

�
power(#) knots(numlist)

noexknot generate(varname) type(type) labfmt(%fmt)
�

frencurv

�
newvarlist

� �
if exp

� �
in range

�
, xvar(varname)

�
power(#) refpts(numlist) noexref

knots(numlist) noexknot generate(varname) type(type) labfmt(%fmt)
�

Description

bspline generates a basis of B-splines in an X-variable, based on a list of knots, for use in fitting a regression model
containing a spline in the X-variable. frencurv (“French curve”) generates a basis of reference splines, for use in fitting a
regression model, with the property that the fitted parameters will be values of the spline at a list of reference points on the
x-axis. Usually, the regression command is called with the noconst option.

Options

xvar(varname) specifies the X-variable on which the splines are based.

power(#), a nonnegative integer, specifies the power (or degree) of the splines, for example, zero for constant, 1 for linear, 2
for quadratic, 3 for cubic, 4 for quartic, or 5 for quintic. The default is zero.

knots(numlist) specifies a list of at least 2 ascending knots, on which the splines are based. If knots are absent, then bspline

will initialize the list to the minimum and maximum of xvar, and frencurv will create a list of knots equal to the reference
points (in the case of odd-degree splines such as a linear, cubic, or quintic) or midpoints between reference points (in the
case of even-degree splines such as constant, quadratic, or quartic).

noexknot specifies that the original knot list is not to be extended. If noexknot is not specified, then the knot list is extended
on the left and right by power extra knots on each side, spaced by the distance between the first and last 2 original knots,
respectively.

generate(varname) specifies a prefix for the names of the generated splines, which (if there is no newvarlist) will be named
as varname1: : :varnameN, where N is the number of splines.

type(type) specifies the storage type of the splines generated (float or double). If type is given as anything else (or not
given), then it is set to float.

labfmt(%fmt) specifies the format to be used in the variable labels for the generated splines. The default is the format of the
xvar.

refpts(numlist) (frencurv only) specifies a list of at least 2 ascending reference points, with the property that, if the splines
are used in a regression model, then the fitted values will be values of the spline at those points. If refpts is absent, then
the list is initialized to two points, equal to the minimum and maximum of xvar.

noexref (frencurv only) specifies that the original reference list is not to be extended. If noexref is not specified, then the
reference list is extended on the left and right by int(power=2) extra reference points on each side, spaced by the distance
between the first and last 2 original reference points, respectively.

Remarks

The options described above appear complicated but imply simple defaults for most users. Advanced users and programmers
are given the power to specify a comprehensive choice of nondefault splines. The splines are either given the names in the
newvarlist (if present), or (more usually) generated as a list of numbered variables, prefixed by the generate option. (The
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newvarlist is intended mainly for programmers and allows them to store the splines in temporary variables with temporary
names.)

Methods and formulas

The principles and definitions of B-splines are given in de Boor (1978) and Ziegler (1969). Practical applications in chemistry
are described in Wold (1971, 1974). They are used in signal processing and are associated with a wavelet transformation (Unser,
et al. 1992).

Splines are a method of defining models regressing a scalar Y -variate with respect to a scalar X-variate. By definition, a
kth-degree spline is defined with reference to a set of q knots s1 < s2 < : : : < sq, dividing the x-axis into intervals of the form
[si; si+1). In each of those intervals, the regression is a kth-degree polynomial in X (usually a different one in each interval), but
the polynomials in any two contiguous intervals have the same jth derivatives at the knot separating the two intervals, for j from
zero to k � 1. By convention, the zeroth derivative is the function itself, so a zeroth-degree spline is simply a right-continuous
step function, and a first-degree spline is a simple linear interpolation of values between the knots. (By convention, the intervals
[si; si+1) are closed on the left and open on the right, but this convention only matters for splines of degree zero, which, by
convention, are right-continuous rather than left-continuous.)

Splines can be defined using plus-functions. For a power k and a knot s, the kth-power plus-function at s is defined as

Pk(x; s) =

�
(x� s)k; x � s
0; x < s

(1)

The plus-functions are a basis for the space of splines. That is to say, for any kth-degree spline S(�), with knots s1 < s2 < : : : < sq,
there exists a q-vector � such that, for any x,

S(x) =

qX
j=1

�jPk(x; sj) (2)

It might seem that, to fit a spline in a covariate X to a Y -variate, all we have to do is to define a design matrix U , such
that Uij = Pk(xi; sj) and fit � as a vector of regression coefficients. This is not a good idea for two reasons. First, there are
problems with stability, as Pk(x; s) will be very large for k > 1 and x much greater than s. Second, the �-parameters estimated
will not be easy to explain in words to a nonmathematician. The first problem was solved with the introduction of B-splines
by Schoenberg in the 1960s, and these are calculated by bspline. The second problem is solved using frencurv, which calls
bspline and then transforms the B-splines, so that the regression parameters will simply be values of the spline at reference
points.

The B-splines define an alternative basis of the splines with a given set of knots. Ziegler (1969) defines the B-spline for a
set of k + 2 knots s1 < s2 < ::: < sk+2 as

B(x; s1; : : : ; sk+2) = (k + 1)

k+2X
j=1

24 Y
1�h�k+2;h6=j

(sh � sj)

35�1 Pk(x; sj) (3)

The B-spline (3) is positive for x in the open interval (s1; sk+2) and zero for other x. If the sj are part of an extended set of
knots extending forwards to +1 and backwards to �1, then the set of B-splines based on sets of k + 2 consecutive knots
forms a basis of the set of all kth-degree splines defined on the full set of knots. Figure 1 shows the constant, linear, quadratic
and cubic B-splines originating at zero and corresponding to unit knots.

For the purposes of bspline and frencurv, I have taken the liberty of redefiningB-splines by scaling theB(x; s1; : : : ; sk+2)
in (3) by a factor equal to the mean distance between two consecutive knots to arrive at the scale-invariant B-spline

A(x; s1; : : : ; sk+2) =
sk+2 � s1
k + 1

B(x; s1; : : : ; sk+2) =

(Pk+1
j=1

Qk+2
h=1 �jh(x); if s1 � x < sk+2

0; otherwise

where the functions �jh(�) are defined by

�jh(x) =

8<:
1; if h = j

(sk+2 � s1)=(sh � sj); if h = j + 1

P1(x; sj)=(sh � sj); otherwise

(4)
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The scaled B-spline A(x; s1; : : : ; sk+2) has the advantage that it is dimensionless, being a sum of products of the dimensionless
quantities �hj(x). That is to say, it is unaffected by the scale of units of the x-axis, and therefore has the same values, whether
x is time in millennia or time in nanoseconds. The original Ziegler B-spline B(x; s1; : : : ; sk+2) is expressed in units of x�1.
Therefore, if the scaled B-spline A(x; s1; : : : ; sk+2) appears in a design matrix, then its regression coefficient is expressed
in units of the Y -variate, whereas if the original B-spline B(x; s1; : : : ; sk+2) appears in a design matrix, then its regression
coefficient is expressed in Y -units multiplied by X-units and will be difficult to interpret, even for a mathematician. The B-splines
computed by bspline are therefore the A(x; s1; : : : ; sk+2), and users who prefer the original Ziegler B-splines must scale
them by (k + 1)=(sk+2 � s1). (This factor happens to be one for splines with unit-spaced knots, such as those in Figure 1.)
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Figure 1. B-splines originating at zero with unit knots.

Given n data points, a Y -variate, an X-covariate, and a set of q+k+1 consecutive knots sh < : : : < sh+q < : : : < sh+q+k,
we can regress the Y -variate with respect to a kth-degree spline in X by defining a design matrix V , with one row for each of
the n data points and one column for each of the first q knots, such that

Vij = A(xi; sh+j�1; : : : ; sh+j+k) (5)

We can then regress the Y -variate with respect to the design matrix V and compute a vector � of regression coefficients, such
that V � is the fitted spline. The parameter �j measures the contribution to the fitted spline of the B-spline originating at the
knot sh+j�1 and terminating at the knot sh+j+k. There will be no stability problems such as we are likely to have with the
original plus-function basis, as each B-spline is bounded and localized in its effect.

It is important to define enough knots. If the sequence of knots fsjg extends to +1 on the right and to �1 on the left,
then the kth-degree B-splines A(�; sh+j�1; : : : ; sh+j+k) on sets of k + 2 consecutive knots are a basis for the full space of
kth-degree splines on the full set of knots. If S(�) is one of these splines, and [sj ; sj+1) is an interval between consecutive
knots, then the values of S(x) in the interval are affected by the k + 1 B-splines originating at the knots sj�k; : : : ; sj and
terminating at the knots sj+1; : : : ; sj+k+1. It follows that, if we start by specifying a sequence of knots s0 < : : : < sm, and
we want to fit a spline for values of x in the interval [s0; sm), then we must also use k extra knots s�k < : : : < s�1 to the left
of s0 and k extra knots sm+1 < : : : < sm+k to the right of sm to define the m+ k consecutive B-splines affecting S(x) for x
in the interval [s0; sm). These m+ k B-splines originate at the knots s�k; : : : ; sm�1 and terminate at the knots s1; : : : ; sm+k,
respectively. Any spline S(�), in the full space of kth-degree splines defined using the full set of knots, is equal to a linear
combination of these m + k B-splines in the interval [s0; sm), which we will denote as the completeness region for splines
which are linear combinations of these m+ k B-splines. These linear combinations are zero for x < s�k and x � sm+k and
“incomplete” in the outer regions [s�k; s0) and [sm; sm+k), in which the spline is “returning to zero”.

bspline and frencurv assume, by default, that the knots option specified by the user is only intended to span the
completeness region, and that the specified knots correspond to the s0; : : : ; sm. By default, bspline and frencurv generate
k extra knots on the left, with spacing equal to the difference between the first two knots, and k extra knots on the right, with
spacing equal to the difference between the last two knots. If the user specifies the option noexknot, then bspline assumes
that the user has specified the full set of knots, corresponding to s�k; : : : ; sm+k and does not generate any new knots. This
allows users to specify their own spacing for the outer knots if they wish but makes the specification of knots simpler in the
default case because users do not have to count the extra outer knots for themselves.

The B-spline regression parameters are expressed in units of the Y -variable, but they are not easy to interpret. If we have
calculated the n� q matrix V of B-splines as in (5), and we also have a set of q reference X-values r1 < r2 < : : : < rq, then
we might prefer to reparameterize the spline by its values at the rj . To do this, we first calculate a q � q square matrix W ,
defined such that

Wij = A(ri; sh+j�1; : : : ; sh+j+k) (6)
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the value of the jth B-spline at the ith reference point. If � is the (column) q-vector of regression coefficients with respect to
the B-splines in V , and  is the (column) q-vector of values of the spline at the reference points, then

 =W� (7)

If W is invertible, then the n-vector of values of the fitted spline at the data points is

V � = VW�1W� = VW�1 = Z (8)

where Z = VW�1 is a transformed n � q design matrix whose columns contain values of a set of reference splines for the
estimation of the reference-point spline values .

The choice of reference points is open to the user and constrained mainly by the requirement that the matrix W is invertible.
This implies that each of the q B-splines must be positive for at least one of the q reference values, and that each reference
value must have at least one positive B-spline value. A natural choice of reference values might be one in the midrange of each
B-spline, possibly the central knot for an odd-degree B-spline (such as a linear, cubic, or quintic), or the midpoint between the
two central knots for an even-degree B-spline (such as a constant, quadratic, or quartic). This choice has the consequence that,
for a spline of degree k, there will be int(k=2) reference points outside the spline’s completeness region on the left, and another
int(k=2) reference points outside the spline’s completeness region on the right. The parameters corresponding to these “extra”
reference points will not be easy to explain to nonmathematicians, as they describe the behavior of the spline as it returns to
zero outside its completeness region. However, for a quadratic or cubic spline, there is only one such external reference Y -value
at each end of the range.

By default (if the user does not specify knots), frencurv starts with the reference points originally provided (which default
to the minimum and maximum of xvar if no refpts are provided) and chooses knots “appropriately.” For an odd-degree spline
(power odd), the knots are initialized to the original reference points themselves. For an even-degree spline (power even), the
knots are initialized to midpoints corresponding to the original reference points. That is to say, if there are m original reference
points r1 < : : : < rm and power is even, then the original knots s0 < : : : < sm are initialized to

sj =

8><>:
r1 � (r2 � r1)=2; if j = 0

(rj + rj+1)=2; if 1 � j � m� 1

rm + (rm � rm�1)=2; if j = m

(9)

frencurv assumes, by default, that the reference points initially provided are all in the completeness region. It adds
int(k=2) extra reference points to the left, spaced by the difference between the first two original reference points, and int(k=2)
extra reference points to the right, spaced by the difference between the last two original reference points, where k is specified
by the power option. If noexref is specified, then the original refpts are assumed to be the complete set, and it is the user’s
responsibility to choose sensible ones. In either case, the original knots are extended on the left and right as described above,
unless noexknot is specified. (These rules seem complicated, but lead to sensible defaults if the naive user specifies a list of
reference points and expects them to be in the completeness region of the spline, while preserving the ability of advanced users
to specify exactly what they want at their own risk.)

Figure 2 shows the constant, linear, quadratic and cubic reference splines corresponding to a reference point at 4, assuming
unit reference points and default knots (equal to reference points for odd degree and inter-reference midpoints for even degree).
Note that each spline is one at its own reference point and zero at all other reference points. They are similar to (but not the
same as) the B-spline wavelets of Unser et al. 1992.
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Figure 2. Reference splines at 4 with unit reference points.

Example

In Stata’s auto data, we can use frencurv and regress (with the noconstant option) to fit a cubic spline for miles per
gallon with respect to weight:

. frencurv,xvar(weight) refpts(1760(770)4840) gen(cs) power(3)

. describe cs*

13. cs1 float %8.4f Spline at 990 (INCOMPLETE)

14. cs2 float %8.4f Spline at 1,760

15. cs3 float %8.4f Spline at 2,530

16. cs4 float %8.4f Spline at 3,300

17. cs5 float %8.4f Spline at 4,070

18. cs6 float %8.4f Spline at 4,840

19. cs7 float %8.4f Spline at 5,610 (INCOMPLETE)

. regress mpg cs*,noconst robust

Regression with robust standard errors Number of obs = 74

F( 7, 67) = 618.91

Prob > F = 0.0000

R-squared = 0.9792

Root MSE = 3.3469

------------------------------------------------------------------------------

| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

cs1 | 11.82559 15.56642 0.760 0.450 -19.24512 42.89629

cs2 | 29.21133 1.761704 16.581 0.000 25.69495 32.72771

cs3 | 22.65796 .7625134 29.715 0.000 21.13597 24.17994

cs4 | 19.4749 .610094 31.921 0.000 18.25715 20.69266

cs5 | 15.51593 .8409023 18.452 0.000 13.83748 17.19437

cs6 | 10.60747 1.585487 6.690 0.000 7.442828 13.77212

cs7 | -28.19347 21.59599 -1.305 0.196 -71.29924 14.91229

------------------------------------------------------------------------------

We have arbitrarily chosen the reference points to be equally spaced from the minimum of weight (1,760 pounds) to
the maximum of weight (4,840 pounds). By default, frencurv ensures that the spline is complete in the range of X-values
spanned by the original reference points provided by the user. The describe command lists the reference splines with their
labels. Note that frencurv has added two extra reference points outside the spline’s completeness region (at weights of 990 and
5,610 pounds) and indicated this incompleteness in the variable labels. The coefficients fitted by regress (with the noconstant

option) are simply the fitted values of mpg at the reference points. Note that the ones corresponding to the splines cs2 to
cs6 have “sensible” values, corresponding to the expected levels of mpg at the appropriate value of weight, whereas the ones
corresponding to cs1 and cs7 have “nonsense” values because they correspond to reference “weights” extrapolated off the edge
of the range of sensible weight values. This is the price we pay for making all reference points equal to knots of the cubic
spline. Figure 3 shows observed and fitted values of mpg plotted against weight. The fitted curve is calculated using predict

(see [R] predict) and is interpolated cubically between the reference points.
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Figure 3. Mileage plotted against weight (points) with fitted cubic spline (line).

The frencurv parameterization allows us to use lincom to calculate confidence intervals for differences (or other contrasts)
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between the values of the spline at different reference points. Here, we estimate the difference between expected mileage at
weights of 2,530 and 4,070 pounds:

. lincom cs3-cs5

( 1) cs3 - cs5 = 0.0

------------------------------------------------------------------------------

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | 7.142029 1.058829 6.745 0.000 5.028598 9.25546

------------------------------------------------------------------------------

We see that cars weighing 2,530 pounds are expected to travel 5.03 to 9.26 more miles per gallon than cars weighing 4,070
pounds.

We can, instead, choose an alternative set of reference points, using noexref and specifying our own knots. The initial
knots are the same initial knots as in the previous model (where they were also reference points), namely 5 equally spaced
values from the minimum to the maximum of weight. However, the new reference points are 7(= 5+ 2) equally spaced values
covering the same range. The knots and the reference points are therefore out of synchrony, but the reference points are now all
in the completeness region of the spline because they are in the range spanned by the initial knots. (Remember that by default,
bspline and frencurv add new knots on the left and right to make the spline complete over the range of the original knots.)
The model is exactly the same model as before (because a spline model is defined by the knots), but the parameters are now
all sensible within-range mpg values, which nontechnical people can understand. Note that we have used labfmt to handle the
noninteger values of the reference points in the variable labels.

. frencurv,xvar(weight) refpts(1760(513.33333)4840) noexr k(1760(770)4840) gen(sp)

> power(3) labfmt(%7.2f)

. describe sp*

20. sp1 float %8.4f Spline at 1760.00

21. sp2 float %8.4f Spline at 2273.33

22. sp3 float %8.4f Spline at 2786.67

23. sp4 float %8.4f Spline at 3300.00

24. sp5 float %8.4f Spline at 3813.33

25. sp6 float %8.4f Spline at 4326.67

26. sp7 float %8.4f Spline at 4840.00

(Continued on next page)
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. regress mpg sp*,noconst robust

Regression with robust standard errors Number of obs = 74

F( 7, 67) = 618.91

Prob > F = 0.0000

R-squared = 0.9792

Root MSE = 3.3469

------------------------------------------------------------------------------

| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

sp1 | 29.21133 1.761704 16.581 0.000 25.69495 32.72771

sp2 | 25.89924 1.073405 24.128 0.000 23.75671 28.04177

sp3 | 20.98226 .7479685 28.052 0.000 19.4893 22.47521

sp4 | 19.4749 .610094 31.921 0.000 18.25715 20.69266

sp5 | 15.97982 .5560974 28.736 0.000 14.86985 17.0898

sp6 | 16.74691 1.934879 8.655 0.000 12.88487 20.60894

sp7 | 10.60747 1.585487 6.690 0.000 7.442828 13.77212

------------------------------------------------------------------------------

Finally, for technical people, we can fit the same model yet again, using bspline instead of frencurv. Here, the splines
are B-splines rather than reference splines. The variable labels show the range of positive values of each B-spline, delimited
by knots, including the extra knots calculated by bspline. The parameters are expressed in miles per gallon but are not easy
for nonmathematicians to interpret.

. bspline,xvar(weight) knots(1760(770)4840) gen(bs) power(3) labf(%4.0f)

. describe bs*

27. bs1 float %8.4f B-spline on [-550,2530)

28. bs2 float %8.4f B-spline on [220,3300)

29. bs3 float %8.4f B-spline on [990,4070)

30. bs4 float %8.4f B-spline on [1760,4840)

31. bs5 float %8.4f B-spline on [2530,5610)

32. bs6 float %8.4f B-spline on [3300,6380)

33. bs7 float %8.4f B-spline on [4070,7150)

. regress mpg bs*,noconst robust

Regression with robust standard errors Number of obs = 74

F( 7, 67) = 618.91

Prob > F = 0.0000

R-squared = 0.9792

Root MSE = 3.3469

------------------------------------------------------------------------------

| Robust

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

bs1 | 8.530818 24.5484 0.348 0.729 -40.468 57.52964

bs2 | 36.83022 5.330421 6.909 0.000 26.19066 47.46979

bs3 | 19.41627 2.252816 8.619 0.000 14.91963 23.91291

bs4 | 21.45246 1.708278 12.558 0.000 18.04272 24.8622

bs5 | 11.62333 2.241923 5.185 0.000 7.148434 16.09823

bs6 | 25.14979 7.910832 3.179 0.002 9.359707 40.93988

bs7 | -48.57765 34.29427 -1.416 0.161 -117.0293 19.87399

------------------------------------------------------------------------------

Technical note

There are other programs in Stata to generate splines. mkspline (see [R] mkspline) generates a basis of linear splines to
be used in a design matrix, as does frencurv, power(1), but the basis is slightly different because the fitted parameters for
frencurv are reference values, whereas the fitted parameters for mkspline are the local slopes of the spline in the inter-knot
intervals. spline and spbase (Sasieni 1994) are used for fitting a natural cubic spline, which is constrained to be linear outside
the completeness region and parameterized using the truncated power basis. The splines fitted using bspline or frencurv,
on the other hand, are unconstrained (hence the extra degrees of freedom corresponding to the external reference points) and
parameterized using the B-spline or reference spline basis, respectively. frencurv and bspline are therefore complementary
to the existing programs and do not supersede them.
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Saved results

bspline saves in r():

Scalars
r(xsup) upper bound of completeness region r(xinf) lower bound of completeness region

Macros
r(nincomp) number of X-values out of completeness region r(knots) final list of knots
r(splist) varlist of splines r(labfmt) format used in spline labels
r(type) storage type of splines (float or double) r(nknot) number of knots
r(nspline) number of splines r(power) power (or degree) of splines
r(xvar) X-variable specified by xvar option

Matrices
r(knotv) row vector of knots

frencurv saves all of the above results in r(), and also the following:

Macros
r(refpts) final list of reference points

Matrices
r(refv) row vector of reference points

The result r(nincomp) is the number of values of xvar outside the completeness region of the space of splines defined by
the reference splines or B-splines. The number lists r(knots) and r(refpts) are the final lists after any left and right extensions
carried out by bspline or frencurv, and the vectors r(knotv) and r(refv) contain the same values in double precision (mainly
for programmers). The scalars r(xinf) and r(xsup) are knots, such that the completeness region is r(xinf) � x < r(xsup).
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Abstract: listcoef is a post-estimation command that facilitates the interpretation of estimated coefficients in regression models
for categorical, limited, and count dependent variables. The command provides options to list various transformations of
the estimated coefficients, such as percent change, factor change, and standardized coefficients. The user can restrict which
coefficients are listed by specifying a variable list or indicating a minimum significance level. The help option provides
details on the proper interpretation of coefficients.

Keywords: regression models, list coefficients, standardized coefficients, odds ratios, percent change coefficients, post-estimation.

Introduction

The most effective interpretation of regression models often requires the use of alternative transformations of the canonical
parameters that define a model. In Stata, each command for estimating a regression model lists estimates of these fundamental
parameters. In some cases, there are options to list transformations of the parameters, such as the or option to list odds
ratios in logit-type models or the beta option to list fully standardized coefficients for regress. Other programs, such as
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mcross introduced by Rogers (1995) conveniently present alternative parameterizations that facilitate interpretation. While Stata
is commendably clear and accurate in explaining the meaning of the estimated parameters, in practice it is easy to be confused
about proper interpretations. For example, the zip model simultaneously estimates a binary and count model, and it is easy to
be confused on the direction of the effects.

This article describes the post-estimation command listcoef which allows users to list estimated coefficients in ways that
facilitate interpretation. Users can list coefficients selected by name or significance level, list transformations of the coefficients,
and request help to facilitate proper interpretation. The user can quietly estimate their model followed by the listcoef

command. Additional information on measures of fit for the model can be obtained with the fitstat command of Long and
Freese (2000).

Syntax

listcoef

�
varlist

� �
, pvalue(#) f factor j percent g std constant matrix help

�
Options

pvalue(#) specifies that only coefficients significant at the # significance level or smaller will be printed. If pvalue is not
given, coefficients for all levels of significance are listed.

factor specifies that the factor change coefficients should be listed.

percent specifies that percent change coefficients should be listed instead of factor change coefficients.

std specifies that coefficients standardized to a unit variance for the independent and/or dependent variables should be listed.
For models with a latent dependent variable, the variance of the latent outcome is estimated.

constant includes the constant(s) in the output.

matrix returns results in r() class matrices. These matrices are defined below.

help includes details for interpreting each coefficient.

Description

listcoef can be used with the regression commands clogit, cnreg, cloglog, gologit, intreg, logistic, logit,
mlogit, nbreg, ologit, oprobit, omodel, poisson, probit, regress, zinb, and zip.

listcoef uses several utility ado files. These files are also used in other procedures that the authors are writing and may
be useful to other programmers. Only brief descriptions are given here. For more details, type help command-name after the
programs have been installed.

� pecats.ado returns the names and values of the categories for models with ordinal, nominal, or binary outcomes. For
mlogit it indicates the value of the reference category.

� pedum returns a scalar indicating if a variable is a dummy variable, defined as having only the values 0, 1, or missing.

� perhs.ado returns the number of right hand side variables and their names for regression models.

� pesum.ado computes the means, standard deviations, minima, and maxima for the variables in a regression. Optionally,
it determines the medians and whether a variable is binary. Matrices are returned with the first column containing statistics
for the dependent variables, with the remaining columns containing information for the independent variables.

Depending on the model estimated and the specified options, listcoef will compute standardized coefficients, factor
change in the odds or expected counts, or percent change in the odds or expected counts. The table below lists which options
and types of coefficients are available for each estimation command. If an option is the default, it does not need to be specified
in the command.

Option
Type Commands factor percent std

Type 1: regress, probit, cloglog, oprobit, No No Default
tobit, cnreg, intreg

Type 2: logit, logistic, ologit Default Yes Yes
Type 3: clogit, mlogit, poisson, nbreg, zip, zinb Default Yes No

Example for regress

In the simplest case, one can obtain x-standardized, y-standardized, and fully standardized coefficients after estimating a
model with regress. The standard Stata output is
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. regress job fem phd ment fel art cit

Source | SS df MS Number of obs = 408

---------+------------------------------ F( 6, 401) = 17.78

Model | 81.0584763 6 13.5097461 Prob > F = 0.0000

Residual | 304.737915 401 .759944926 R-squared = 0.2101

---------+------------------------------ Adj R-squared = 0.1983

Total | 385.796392 407 .947902683 Root MSE = .87175

------------------------------------------------------------------------------

job | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

fem | -.1391939 .0902344 -1.543 0.124 -.3165856 .0381977

phd | .2726826 .0493183 5.529 0.000 .1757278 .3696375

ment | .0011867 .0007012 1.692 0.091 -.0001917 .0025651

fel | .2341384 .0948206 2.469 0.014 .0477308 .4205461

art | .0228011 .0288843 0.789 0.430 -.0339824 .0795846

cit | .0044788 .0019687 2.275 0.023 .0006087 .008349

_cons | 1.067184 .1661357 6.424 0.000 .7405785 1.39379

------------------------------------------------------------------------------

listcoef provides additional information:

. listcoef, help std constant

regress (N=408): Unstandardized and Standardized Estimates

Observed SD: .97360294

SD of Error: .8717482

---------------------------------------------------------------------------

job | b t P>|t| bStdX bStdY bStdXY SDofX

---------+-----------------------------------------------------------------

fem | -0.13919 -1.543 0.124 -0.0680 -0.1430 -0.0698 0.4883

phd | 0.27268 5.529 0.000 0.2601 0.2801 0.2671 0.9538

ment | 0.00119 1.692 0.091 0.0778 0.0012 0.0799 65.5299

fel | 0.23414 2.469 0.014 0.1139 0.2405 0.1170 0.4866

art | 0.02280 0.789 0.430 0.0514 0.0234 0.0528 2.2561

cit | 0.00448 2.275 0.023 0.1481 0.0046 0.1521 33.0599

_cons | 1.06718 6.424 0.000

---------------------------------------------------------------------------

b = raw coefficient

t = t-score for test of b=0

P>|t| = p-value for t-test

bStdX = x-standardized coefficient

bStdY = y-standardized coefficient

bStdXY = fully standardized coefficient

SDofX = standard deviation of X

Example with logit

The logit model illustrates that listcoef can be used to obtain alternative transformations of the basic parameters. We
begin by estimating the logit model, which produces the standard output:

. logit lfp k5 k618 age wc hc lwg inc, nolog

Logit estimates Number of obs = 753

LR chi2(7) = 124.48

Prob > chi2 = 0.0000

Log likelihood = -452.63296 Pseudo R2 = 0.1209

------------------------------------------------------------------------------

lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

k5 | -1.462913 .1970006 -7.426 0.000 -1.849027 -1.076799

k618 | -.0645707 .0680008 -0.950 0.342 -.1978499 .0687085

age | -.0628706 .0127831 -4.918 0.000 -.0879249 -.0378162

wc | .8072738 .2299799 3.510 0.000 .3565215 1.258026

hc | .1117336 .2060397 0.542 0.588 -.2920969 .515564

lwg | .6046931 .1508176 4.009 0.000 .3090961 .9002901

inc | -.0344464 .0082084 -4.196 0.000 -.0505346 -.0183583

_cons | 3.18214 .6443751 4.938 0.000 1.919188 4.445092

------------------------------------------------------------------------------

Most frequently, the logit model is interpreted using factor change coefficients, also known as odds ratios. These are the default
option for listcoef.

. listcoef, help
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logit (N=753): Factor Change in Odds

Odds of: inLF vs NotInLF

------------------------------------------------------------------

lfp | b z P>|z| e^b e^bStdX SDofX

---------+--------------------------------------------------------

k5 | -1.46291 -7.426 0.000 0.2316 0.4646 0.5240

k618 | -0.06457 -0.950 0.342 0.9375 0.9183 1.3199

age | -0.06287 -4.918 0.000 0.9391 0.6020 8.0726

wc | 0.80727 3.510 0.000 2.2418 1.4381 0.4500

hc | 0.11173 0.542 0.588 1.1182 1.0561 0.4885

lwg | 0.60469 4.009 0.000 1.8307 1.4266 0.5876

inc | -0.03445 -4.196 0.000 0.9661 0.6698 11.6348

------------------------------------------------------------------

b = raw coefficient

z = z-score for test of b=0

P>|z| = p-value for z-test

e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

SDofX = standard deviation of X

Alternatively, a user might want to interpret the coefficients in terms of their effect on the latent y� that underlies the observed
variable y. Note that to use listcoef to compute standardized coefficients does not require that the model be reestimated.

. listcoef, std help

logit (N=753): Unstandardized and Standardized Estimates

Observed SD: .49562951

Latent SD: 2.0500391

Odds of: inLF vs NotInLF

---------------------------------------------------------------------------

lfp | b z P>|z| bStdX bStdY bStdXY SDofX

---------+-----------------------------------------------------------------

k5 | -1.46291 -7.426 0.000 -0.7665 -0.7136 -0.3739 0.5240

k618 | -0.06457 -0.950 0.342 -0.0852 -0.0315 -0.0416 1.3199

age | -0.06287 -4.918 0.000 -0.5075 -0.0307 -0.2476 8.0726

wc | 0.80727 3.510 0.000 0.3633 0.3938 0.1772 0.4500

hc | 0.11173 0.542 0.588 0.0546 0.0545 0.0266 0.4885

lwg | 0.60469 4.009 0.000 0.3553 0.2950 0.1733 0.5876

inc | -0.03445 -4.196 0.000 -0.4008 -0.0168 -0.1955 11.6348

---------------------------------------------------------------------------

b = raw coefficient

z = z-score for test of b=0

P>|z| = p-value for z-test

bStdX = x-standardized coefficient

bStdY = y-standardized coefficient

bStdXY = fully standardized coefficient

SDofX = standard deviation of X

Example with mlogit

A key to fully interpreting the multinomial logit model is to consider all contrasts among the outcome categories. The
standard output from mlogit provides contrast between all outcomes and the category specified by basecategory. Here we
specify the rrr option in order to obtain “relative risk ratios” which are also known as factor change coefficients.

. mlogit occ white ed exper, basecategory(1) rrr nolog

Multinomial regression Number of obs = 337

LR chi2(12) = 166.09

Prob > chi2 = 0.0000

Log likelihood = -426.80048 Pseudo R2 = 0.1629

------------------------------------------------------------------------------

occ | RRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

BlueCol |

white | 3.443553 2.494631 1.707 0.088 .8324658 14.2445

ed | .9053581 .0926011 -0.972 0.331 .7408981 1.106324

exper | 1.004732 .0174807 0.271 0.786 .9710484 1.039585

---------+--------------------------------------------------------------------

Craft |

white | 1.603748 .9691607 0.782 0.434 .4906218 5.242345

ed | 1.098357 .1071502 0.962 0.336 .9072032 1.329788

exper | 1.028071 .0171417 1.660 0.097 .9950164 1.062223

---------+--------------------------------------------------------------------
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WhiteCol |

white | 4.813311 4.34508 1.741 0.082 .8204383 28.23852

ed | 1.423556 .1669526 3.011 0.003 1.131219 1.791439

exper | 1.035201 .0194922 1.837 0.066 .9976936 1.074119

---------+--------------------------------------------------------------------

Prof |

white | 5.896191 4.451944 2.350 0.019 1.342357 25.89852

ed | 2.178969 .2497737 6.795 0.000 1.740518 2.72787

exper | 1.036294 .0186916 1.977 0.048 1.000299 1.073584

------------------------------------------------------------------------------

(Outcome occ==Menial is the comparison group)

The standard Stata output allows you to immediately determine the factor change in the odds of each outcome category relative
to the comparison group Menial. The output does not include comparisons among other outcomes, such as BlueCol versus
Craft. listcoef provides all possible comparisons. Since this can generate extensive output, we illustrate two options that limit
which coefficients are listed. By specifying the variable ed, only coefficients for ed are listed. The option pv(.05) excludes
from printing any contrast that is not significant at the .05 level. Note that the coefficients below correspond to those listed
above (for example, the effect of ed on the odds of Prof versus Menial is 2.179 in both sets of output):

. listcoef ed, pv(.05)

mlogit (N=337): Factor Change in the Odds of occ when P>|z| < 0.05

Variable: ed (sd= 2.94643)

Odds comparing |

Group 1 - Group 2 | b z P>|z| e^b e^bStdX

------------------+---------------------------------------------

BlueCol -Craft | -0.19324 -2.494 0.013 0.8243 0.5659

BlueCol -WhiteCol | -0.45258 -4.425 0.000 0.6360 0.2636

BlueCol -Prof | -0.87828 -8.735 0.000 0.4155 0.0752

Craft -BlueCol | 0.19324 2.494 0.013 1.2132 1.7671

Craft -WhiteCol | -0.25934 -2.773 0.006 0.7716 0.4657

Craft -Prof | -0.68504 -7.671 0.000 0.5041 0.1329

WhiteCol-BlueCol | 0.45258 4.425 0.000 1.5724 3.7943

WhiteCol-Craft | 0.25934 2.773 0.006 1.2961 2.1471

WhiteCol-Prof | -0.42569 -4.616 0.000 0.6533 0.2853

WhiteCol-Menial | 0.35316 3.011 0.003 1.4236 2.8308

Prof -BlueCol | 0.87828 8.735 0.000 2.4067 13.3002

Prof -Craft | 0.68504 7.671 0.000 1.9838 7.5264

Prof -WhiteCol | 0.42569 4.616 0.000 1.5307 3.5053

Prof -Menial | 0.77885 6.795 0.000 2.1790 9.9228

Menial -WhiteCol | -0.35316 -3.011 0.003 0.7025 0.3533

Menial -Prof | -0.77885 -6.795 0.000 0.4589 0.1008

----------------------------------------------------------------

Example with zip and zinb

For the zip and zinb models, the output of listcoef makes it much simpler to be sure about the proper interpretation.
In the standard output from zip, which follows, the direction of effects can be difficult to determine.

. zip art fem mar kid5 phd ment, inf(fem mar kid5 phd ment) nolog

Zero-inflated poisson regression Number of obs = 915

Nonzero obs = 640

Zero obs = 275

Inflation model = logit LR chi2(5) = 78.56

Log likelihood = -1604.773 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

art | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

art |

fem | -.2091446 .0634047 -3.299 0.001 -.3334155 -.0848737

mar | .103751 .071111 1.459 0.145 -.035624 .243126

kid5 | -.1433196 .0474293 -3.022 0.003 -.2362793 -.0503599

phd | -.0061662 .0310086 -0.199 0.842 -.066942 .0546096

ment | .0180977 .0022948 7.886 0.000 .0135999 .0225955

_cons | .6408391 .1213072 5.283 0.000 .4030814 .8785967

---------+--------------------------------------------------------------------
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inflate |

fem | .1097465 .2800813 0.392 0.695 -.4392028 .6586958

mar | -.3540108 .3176103 -1.115 0.265 -.9765156 .2684941

kid5 | .2171001 .196481 1.105 0.269 -.1679956 .6021958

phd | .0012702 .1452639 0.009 0.993 -.2834418 .2859821

ment | -.134111 .0452462 -2.964 0.003 -.2227918 -.0454302

_cons | -.5770618 .5093853 -1.133 0.257 -1.575439 .421315

------------------------------------------------------------------------------

listcoef makes the interpretation of coefficients explicit.

. listcoef fem phd, help

zip (N=915): Factor Change in Expected Count

Observed SD: 1.926069

Count Equation: Factor Change in Expected Count for Those Not Always 0

------------------------------------------------------------------

art | b z P>|z| e^b e^bStdX SDofX

---------+--------------------------------------------------------

fem | -0.20914 -3.299 0.001 0.8113 0.9010 0.4987

phd | 0.10375 1.459 0.145 1.1093 1.0503 0.4732

------------------------------------------------------------------

b = raw coefficient

z = z-score for test of b=0

P>|z| = p-value for z-test

e^b = exp(b) = factor change in expected count for unit increase in X

e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X

SDofX = standard deviation of X

Binary Equation: Factor Change in Odds of Always 0

------------------------------------------------------------------

Always0 | b z P>|z| e^b e^bStdX SDofX

---------+--------------------------------------------------------

fem | 0.10975 0.392 0.695 1.1160 1.0563 0.4987

phd | -0.35401 -1.115 0.265 0.7019 0.8458 0.4732

------------------------------------------------------------------

b = raw coefficient

z = z-score for test of b=0

P>|z| = p-value for z-test

e^b = exp(b) = factor change in odds for unit increase in X

e^bStdX = exp(b*SD of X) = change in odds for SD increase in X

SDofX = standard deviation of X

Saved Results

When the matrix option is specified, listcoef saves in r(.) whichever of the following are computed for a particular
model. Since saving these matrices can noticeably slow execution for mlogit, matrices are only saved when the matrix option
is specified. The row and column labels of matrices describe each coefficient that is included in each of the following matrices
(details on the computation of these coefficients are given in the next section).

r(b) slope or regression coefficients
r(b fact) factor change coefficients
r(b facts) x-standardized factor change coefficients
r(b p) p-values for test of regression coefficients
r(b pct) percent change coefficients
r(b pcts) x-standardized percent change coefficients
r(b sdx) standard deviations for independent variables in finding x- and fully-standardized coefficients
r(b std) fully standardized coefficients
r(b xs) x-standardized coefficients
r(b ys) y or y�-standardized coefficients
r(b z) z-values or t-values for regression
r(cons) constant or constants
r(cons p) p-values or t-values for constant or constants
r(cons z) z-values or t-values for constant or constants
r(contrast) all contrast from mlogit

r(pvalue) a scalar indicating the value specified by the pvalue option

For zip and zinb, the matrices cons2, cons2 p, cons2 z, b2, b2 p, b2 z, b2 fact, b2 facts, b2 pct, and b2 pcts provide
corresponding results for the binary equation.
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In the rest of this insert, we briefly describe each type of coefficient listed by listcoef. Full details along with citations to
original sources are found in Long (1997). For purposes of illustration, we use an example with only two independent variables.

Standardized coefficients

It is often useful to compute coefficients after some or all of the variables have been standardized to a unit variance. This
is particularly useful for the models where the scale of the dependent variable is arbitrary (e.g., logit, probit). By default,
estimation commands express coefficients in the metric of the variables as they are found in the dataset. Standardization can be
introduced as follows.

The linear regression model estimated by regress can be expressed as

y = �0 + �1x1 + �2x2 + " (1)

The independent variables can be standardized with simple algebra. Let �k be the standard deviation of xk. Then, dividing each
xk by �k and multiplying the corresponding �k by �k gives

y = �0 + (�1�1)
x1
�1

+ (�2�2)
x2
�2

+ "

�Sxk = �k�k is an x-standardized coefficient. For a continuous variable, �Sxk can be interpreted as follows. For a standard
deviation increase in xk, y is expected to change by �Sxk units, holding all other variables constant.

To standardize for the dependent variable, let �y be the standard deviation of y. We can standardize y by dividing (1) by
�y , thus giving

y

�y
=

�0
�y

+
�1
�y

x1 +
�2
�y

x2 +
"

�y

Then �
Sy
k =�k=�y is a y-standardized coefficient that can be interpreted as follows. For a unit increase in xk, y is expected to

change by �
Sy
k standard deviations, holding all other variables constant.

For a dummy variable, the interpretation would be as follows. Having characteristic xk (as opposed to not having the
characteristic) results in an expected change in y of �

Sy
k standard deviations, holding all other variables constant.

It is also possible to standardize both y and the x’s as in

y

�y
=

�0
�y

+

�
�1�1
�y

�
x1
�1

+

�
�2�2
�y

�
x2
�2

+
"

�y

Then, �Sk =(�k�k)=�y is a fully standardized coefficient that can be interpreted as follows. For a standard deviation increase in
xk, y is expected to change by �Sk standard deviations, holding all other variables constant.

A variety of other models (logit, tobit, cnreg, intreg, probit, ologit, oprobit) can be written as

y� = �0 + �1x1 + �2x2 + " (2)

where y� is a latent variable.

In models with a latent dependent variable, (2) can be divided by �y� . To estimate the variance of the latent variable, the
quadratic form is used. dVar(y�) = b�0cVar(x)b� + Var(�)

where b� is a vector of estimated coefficients and cVar(x) is the covariance matrix for the x’s computed from the observed data.
In some models such as tobit, Var(�) is estimated from the data. In probit models, Var(�) = 1 by assumption and Var(�) = �2=3
in logit models.

Factor and percent change

In logit-based models and models for counts, coefficients can be expressed either as a factor or multiplicative change in the
odds or the expected count, or as a percentage change. In logit the or option computes the factor change in the odds, referred
to as odds ratios. In mlogit, the rrr option computes the relative risk ratio which is also a factor change in the odds.
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If 
(x; xk) is the odds of some outcome (for example, working versus not working) for a given set of independent variables,
the transformation

e�k =

(x; xk + 1)


(x; xk)

is the factor or multiplicative change in the predicted odds when xk changes by one unit. Thus we have the factor change: for
a unit change in xk, the odds are expected to change by a factor of exp(�k), holding all other variables constant.

The effect of a change of a standard deviation change sk in xk will equal exp (�k � sk), thus giving rise to the standardized
factor change: for a standard deviation change in xk, the odds are expected to change by a factor of exp(�k � s

k
), holding all

other variables constant.

For the binary logit model estimated by logit or logistic, the odds are for outcome “not-0” versus outcome 0’. Often
the dependent variable is coded as 1 and 0 so it becomes the odds of a 1 compared to a 0. The coefficients in the ordinal
logit model estimated by ologit can also be interpreted in terms of factor change in the odds. In this model, the odds are for
“outcomes greater than some value” compared to “outcomes less than some value”, for example, the odds for categories 3 or 4
compared to categories 1 and 2.

Instead of a multiplicative or factor change in the outcome, some people prefer the percent change given by

100 [ exp (�k � �)� 1]

which is listed by listcoef with the percent option.

Count models

The poisson and nbreg models are loglinear in the mean of the expected count. For example in the Poisson model,

E(y j x) = e�0 e�1x1e�2x2

Accordingly, exp (�k) can be interpreted as follows. For a unit change in xk, the expected count changes by a factor of exp(�k),
holding all other variables constant.

For a standard deviation change sk in xk; the factor change coefficient exp (�k � sk) can be interpreted as follows. For a
standard deviation change in xk, the expected count changes by a factor of exp(�k � sk), holding all other variables constant.

Alternatively, the percentage change in the expected count for a � unit change in xk; holding other variables constant, can
be computed as

100� [ exp(�k � �)� 1 ]

Zero-inflated models

The zero-inflated models zip and zinb combine a binary model predicting those who always have 0 outcomes and those
who might not have zeros and a count model that applies to those who could have non-zero outcomes. If the binary portion of
the model is assumed to be a logit, interpretation of the binary portion can be made in terms of the odds of always being 0
versus not always being 0. The count portion can be interpreted as a standard count model. listcoef transforms coefficients
accordingly and the help option provides information on the correct interpretation.

Alternative contrasts for mlogit

mlogit estimates the multinomial logit in which the estimated coefficients are for the comparison of a given outcome
to a base category. For complete interpretation it is useful to examine the coefficients for all possible comparisons, including
comparisons between categories in which neither outcome is the base category. While this could be done by specifying a different
basecategory, all possible comparisons are computed by listcoef. Since this can involve a large number of coefficients
when there are more than three dependent categories, the pvalue options can be useful for finding the most important effects.

Acknowledgment

We thank David Drukker at Stata Corporation for his suggestions.

References
Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.

Long, J. S. and J. Freese. 2000. sg145: Scalar measures of fit for regression models. Stata Technical Bulletin 56: 34–40.

Rogers, W. H. 1995. sqv10: Expanded multinomial comparisons. Stata Technical Bulletin 23: 26–28. Reprinted in Stata Technical Bulletin Reprints,
vol. 4, pp. 181–183.



Stata Technical Bulletin 35

snp15.1 Update to somersd

Roger Newson, Guy’s, King’s and St Thomas’ School of Medicine, London, UK, roger.newson@kcl.ac.uk

Abstract: somersd calculates confidence intervals for rank-order statistics. It has been improved, streamlined, debugged, and
intensively certified.

Keywords: Somers’ D, Kendall’s tau, rank correlation, confidence intervals, nonparametric methods.

Syntax

somersd

�
varlist

� �
weight

� �
if exp

� �
in range

� �
, cluster(varname) level(#) taua tdist

transf(transformation name) cimatrix(new matrix)
�

where transformation name is one of

iden j z j asin j rho j zrho
fweights, iweights, and pweights are allowed.

New options

cimatrix(new matrix) specifies an output matrix to be created, containing estimates and confidence limits for the untransformed
Somers’ D, Kendall’s �a or Greiner’s � parameters. If transf() is specified, then the confidence limits will be asymmetric
and based on symmetric confidence limits for the transformed parameters. This option (like level) may be used in replay
mode as well as in non-replay mode.

New saved results

somersd now saves additionally the name of the program called by predict in the macro e(predict).

Remarks

somersd was introduced in Newson (2000). The program calculates confidence intervals for the rank order statistics Somers’
D and Kendall’s �a for the first variable of varlist as a predictor of each of the other variables in varlist, with estimates and
jackknife covariances saved as estimation results. The new version contains the following improvements:

1. The new option cimatrix has been added (mostly for programmers).

2. The program somers p has been added as the predict program for somersd, and it warns the user that predict should
not be used after somersd.

3. somersd has been streamlined. If cluster() is not specified, then processing time is now quadratically dependent on the
number of distinct value combinations in varlist, instead of being quadratically dependent on the number of observations
as before. This makes a vast difference to the time taken to process discrete variables in data sets with thousands of
observations.

4. A bug has been corrected, which formerly caused incorrect output when the taua option was used with unequal fweights.
(This bug was not present in the earlier version of somersd circulated via the Ideas list, and there was no excuse for me
to allow it to creep in when upgrading somersd for the STB.)

5. The certification script used to certify somersd is now much more comprehensive than before, ruling out the above bug and
a large range of others. (See the online help cscript.) Amongst other checks, it checks its jackknife confidence intervals
for Kendall’s �a with those produced by ktau and jknife (Gould 1995). The latter programs produce the same confidence
limits as somersd, taua tdist in the most simple case, without weights, clustering or transformations. However, ktau
and jknife take much longer, requiring a time cubically dependent on the number of observations.
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sts15 Tests for stationarity of a time series

Christopher F. Baum, Boston College, baum@bc.edu

Abstract: Implements the Elliott–Rothenberg–Stock (1996) DF-GLS test and the Kwiatkowski–Phillips–Schmidt–Shin (1992)
KPSS tests for stationarity of a time series. The DF-GLS test is an improved version of the augmented Dickey–Fuller test.
The KPSS test has a null hypothesis of stationarity and may be employed in conjunction with the DF-GLS test to detect long
memory (fractional integration).

Keywords: stationarity, unit root, time series.

Syntax

dfgls varname
�
if exp

� �
in range

� �
, maxlag(#) notrend ers

�
kpss varname

�
if exp

� �
in range

� �
, maxlag(#) notrend

�
Both tests are for use with time series data; you must tsset your data before using these tests; see [R] tsset. varname may contain time series

operators; see [U] 14.4.3 Time series varlists.

Options

maxlag(#) specifies the maximum lag order to be considered. The test statistics will be calculated for each lag up to the
maximum lag order (which may be zero). If not specified, the maximum lag order for the test is by default calculated
from the sample size using a rule provided by Schwert (1989) using c = 12 and d = 4 in his terminology. Whether the
maximum lag is explicitly specified or computed by default, the sample size is held constant over lags at the maximum
available sample.

notrend specifies that no trend term should be included in the model. The critical values reported differ in the absence of a
trend term.

ERS (dfgls only) specifies that the ERS (and Dickey–Fuller) values are to be used for all levels of significance (eschewing the
response surface estimates).

Description

dfgls performs the Elliott–Rothenberg–Stock (ERS, 1996) efficient test for an autoregressive unit root. This test is similar
to an (augmented) Dickey–Fuller t test, as performed by dfuller, but has the best overall performance in terms of small
sample size and power, dominating the ordinary Dickey–Fuller test. The dfgls test “has substantially improved power when an
unknown mean or trend is present” (ERS, 813).

dfgls applies a generalized least squares (GLS) detrending (demeaning) step to the varname

ydt = yt � b�0zt
For detrending, zt = (1; t)0 and b�0, b�1 are calculated by regressing

[y1; (1� ��L) y2; : : : ; (1� ��L) yT ]

onto
[z1; (1� ��L) z2; :::; (1� ��L) zT ]

where �� = 1 + �c=T with �c = �13.5, and L is the lag operator. For demeaning, zt = (1)
0 and the same regression is

run with �c = �7.0: The values of �c are chosen so that “the test achieves the power envelope against stationary alternatives
(is asymptotically MPI (most powerful invariant)) at 50 percent power” (Stock 1994, 2769; emphasis added). The augmented
Dickey–Fuller regression is then computed using the ydt series

�ydt = �+ t+ �ydt�1 +
mX
i=1

�i�y
d
t�i + �t

where m=maxlag. The notrend option suppresses the time trend in this regression.

Approximate 5% and 10% critical values, by default, are calculated from the response surface estimates of Table 1, Cheung
and Lai (1995, 413), which take both the sample size and the lag specification into account. Approximate 1% critical values for
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the GLS detrended test are interpolated from Table 1 of ERS (page 825). Approximate 1% critical values for the GLS demeaned
test are identical to those applicable to the no-constant, no-trend Dickey–Fuller test and are computed using the dfuller code.
The ERS option specifies that the ERS (and Dickey–Fuller) values are to be used for all levels of significance (eschewing the
response surface estimates).

If the maximum lag order exceeds one, the optimal lag order is calculated by the Ng and Perron (1995) sequential t test
on the highest order lag coefficient, stopping when that coefficient’s p-value is less than 0.10. The lag minimizing the Schwarz
criterion (SC, or BIC) is printed with its minimized value.

kpss performs the Kwiatkowski–Phillips–Schmidt–Shin test introduced in Kwiatkowski et al. (1992) for stationarity of
a time series. This test differs from those in common use (such as dfuller and pperron) by having a null hypothesis of
stationarity. The test may be conducted under the null hypothesis of either trend stationarity (the default) or level stationarity.
Inference from this test is complementary to that derived from those based on the Dickey–Fuller distribution (such as dfgls,
dfuller and pperron). The KPSS test is often used in conjunction with those tests to investigate the possibility that a series is
fractionally integrated; that is, neither I(1) nor I(0); see Lee and Schmidt (1996).

The series is detrended (demeaned) by regressing y on zt = (1; t)
0 �
zt = (1)

0
�
; yielding residuals et: Let the partial sum

series of et be st: Then the zero-order KPSS statistic k0 = T�2
PT

t=1 s
2
t=T

�1
PT

t=1 e
2
t : For maxlag > 0, the denominator is

computed as the Newey–West estimate of the long run variance of the series; see [R] newey.

Approximate critical values for the KPSS test are taken from Kwiatkowski et al. (1992).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on the UK FTA All Share Index of stock prices
(ftap) and stock returns (ftaret) are analyzed.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset

time variable: month, 1965m1 to 1995m12

. dfgls ftap

Number of obs = 355

Maxlag = 16 chosen by Schwert criterion

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

------------------------------------------------------------------------------

DF-GLS(tau)[16] -0.068 -3.480 -2.818 -2.536

DF-GLS(tau)[15] -0.155 -3.480 -2.824 -2.542

DF-GLS(tau)[14] -0.046 -3.480 -2.829 -2.547

DF-GLS(tau)[13] -0.234 -3.480 -2.835 -2.552

DF-GLS(tau)[12] -0.131 -3.480 -2.840 -2.557

DF-GLS(tau)[11] -0.196 -3.480 -2.846 -2.562

DF-GLS(tau)[10] -0.251 -3.480 -2.851 -2.566

DF-GLS(tau)[9] -0.173 -3.480 -2.856 -2.571

DF-GLS(tau)[8] -0.107 -3.480 -2.861 -2.575

DF-GLS(tau)[7] -0.361 -3.480 -2.865 -2.580

DF-GLS(tau)[6] -0.391 -3.480 -2.870 -2.584

DF-GLS(tau)[5] -0.476 -3.480 -2.874 -2.588

DF-GLS(tau)[4] -0.524 -3.480 -2.879 -2.592

DF-GLS(tau)[3] -0.484 -3.480 -2.883 -2.595

DF-GLS(tau)[2] -0.507 -3.480 -2.887 -2.599

DF-GLS(tau)[1] -0.789 -3.480 -2.891 -2.602

Opt Lag (Ng-Perron sequential t) = 15 with RMSE 35.59803

Min SC = 7.275482 at lag 2 with RMSE 37.0745

. kpss ftap

KPSS test for ftap

Maxlag = 16 chosen by Schwert criterion

Critical values for H0: ftap is trend stationary

10%: 0.119 5% : 0.146 2.5%: 0.176 1% : 0.216

Lag order Test statistic

0 7.90141

1 4.18402

2 2.86036

3 2.18027

4 1.76579
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5 1.48676

6 1.2861

7 1.13475

8 1.01642

9 .921225

10 .84288

11 .777242

12 .721428

13 .673349

14 .631492

15 .594708

16 .562121

. dfgls ftaret

Number of obs = 355

Maxlag = 16 chosen by Schwert criterion

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

------------------------------------------------------------------------------

DF-GLS(tau)[16] -4.161 -3.480 -2.818 -2.536

DF-GLS(tau)[15] -4.119 -3.480 -2.824 -2.542

DF-GLS(tau)[14] -4.413 -3.480 -2.829 -2.547

DF-GLS(tau)[13] -4.733 -3.480 -2.835 -2.552

DF-GLS(tau)[12] -4.663 -3.480 -2.840 -2.557

DF-GLS(tau)[11] -4.392 -3.480 -2.846 -2.562

DF-GLS(tau)[10] -4.653 -3.480 -2.851 -2.566

DF-GLS(tau)[9] -4.795 -3.480 -2.856 -2.571

DF-GLS(tau)[8] -4.931 -3.480 -2.861 -2.575

DF-GLS(tau)[7] -6.006 -3.480 -2.865 -2.580

DF-GLS(tau)[6] -6.203 -3.480 -2.870 -2.584

DF-GLS(tau)[5] -6.911 -3.480 -2.874 -2.588

DF-GLS(tau)[4] -7.614 -3.480 -2.879 -2.592

DF-GLS(tau)[3] -7.769 -3.480 -2.883 -2.595

DF-GLS(tau)[2] -9.176 -3.480 -2.887 -2.599

DF-GLS(tau)[1] -13.075 -3.480 -2.891 -2.602

Opt Lag (Ng-Perron sequential t) = 8 with RMSE .0593867

Min SC = -5.566828 at lag 2 with RMSE .0603119

. dfgls ftaret,notrend

Number of obs = 355

Maxlag = 16 chosen by Schwert criterion

Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

------------------------------------------------------------------------------

DF-GLS(mu)[16] -3.165 -2.580 -1.952 -1.637

DF-GLS(mu)[15] -3.161 -2.580 -1.955 -1.640

DF-GLS(mu)[14] -3.430 -2.580 -1.958 -1.643

DF-GLS(mu)[13] -3.725 -2.580 -1.962 -1.646

DF-GLS(mu)[12] -3.711 -2.580 -1.965 -1.649

DF-GLS(mu)[11] -3.528 -2.580 -1.968 -1.652

DF-GLS(mu)[10] -3.776 -2.580 -1.971 -1.655

DF-GLS(mu)[9] -3.933 -2.580 -1.974 -1.658

DF-GLS(mu)[8] -4.087 -2.580 -1.977 -1.660

DF-GLS(mu)[7] -5.039 -2.580 -1.980 -1.663

DF-GLS(mu)[6] -5.278 -2.580 -1.982 -1.665

DF-GLS(mu)[5] -5.966 -2.580 -1.985 -1.668

DF-GLS(mu)[4] -6.679 -2.580 -1.988 -1.670

DF-GLS(mu)[3] -6.928 -2.580 -1.990 -1.672

DF-GLS(mu)[2] -8.312 -2.580 -1.993 -1.675

DF-GLS(mu)[1] -12.060 -2.580 -1.995 -1.677

Opt Lag (Ng-Perron sequential t) = 8 with RMSE .0600067

Min SC = -5.53158 at lag 2 with RMSE .0613843

Both tests indicate that ftap appears to be nonstationary. ftaret appears to be both trend and level stationary.
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Saved Results

dfgls saves the following scalars in r():

r(N) number of observations
r(optlag) optimal lag order
r(scn) Schwarz criterion at lag n
r(rmsen) root mean square error at lag n
r(dftn) DF-GLS statistic at lag n

kpss saves the following scalars in r():

r(N) number of observations
r(dftn) KPSS statistic at lag n
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sts16 Tests for long memory in a time series

Christopher F. Baum, Boston College, baum@bc.edu
Vince Wiggins, Stata Corporation, vwiggins@stata.com

Abstract: Implements the Geweke/Porter-Hudak log periodogram estimator (1983), the Phillips modified log periodogram
estimator (1999b) and the Robinson log periodogram estimator (1995) for the diagnosis of long memory, or fractional
integration, in a time series. The Robinson estimator may be applied to a set of time series.

Keywords: fractional integration, long memory, stationarity, time series.

Syntax

gphudak varname
�
if exp

� �
in range

� �
, powers(numlist)

�
modlpr varname

�
if exp

� �
in range

� �
, powers(numlist) notrend

�
roblpr varlist

�
if exp

� �
in range

� �
, powers(numlist) l(#) j(#) constraints(numlist)

�
These tests are for use with time series data; you must tsset your data before using these tests; see [R] tsset. varname or varlist may contain time

series operators; see [U] 14.4.3 Time-series varlists.

Options

powers(numlist) indirectly specifies the number of ordinates to be included in the regression. A number of ordinates equal
to the integer part of T raised to the powers(numlist) will be used. Powers ranging from 0.50 to 0.75 are commonly
employed for gphudak and modlpr. These routines use the default power of 0.5. roblpr uses the default power of 0.9.
For roblpr, multiple powers may only be specified if a single variable appears in varlist.

notrend specifies that detrending is not to be applied by modlpr. By default, a linear trend will be removed from the series.
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l(#) specifies the number of initial ordinates to be removed from the regression for roblpr. Some researchers have found that
such exclusion improves the properties of tests based on log-periodogram regressions. The default value of l is zero.

j(#) specifies that the log periodogram employed in roblpr is to be computed as an average of adjacent ordinates. The default
value of j is 1, so that no averaging is performed. If j is 2, the number of ordinates is halved; with a j of 3, divided by
three, and so on. When j is greater than 1, the value of powers should be set large enough so that the averaged ordinates
are sufficient in number.

constraints(numlist) specifies the constraint numbers of the linear constraints to be applied during estimation in roblpr. The
default is to perform unconstrained estimation. This option allows the imposition of linear constraints prior to estimation
of the pooled coefficient vector. For instance, if varlist contains prices, dividends, and returns, and your prior (or previous
findings) states that prices’ and dividends’ order of integration is indistinguishable, one might impose that constraint to
improve the power of the F test provided by roblpr. You would specify the constraints prior to the roblpr command
and then provide the list of constraints in the constraints option to roblpr.

Technical note on constraints. When constraints are imposed it is difficult to identify the number of numerator degrees of
freedom in the test for equality of d coefficients reported at the bottom of roblpr’s output. Since constraints can be of
any general form and it is possible to specify constraints that are not unique, roblpr determines the degrees of freedom
from the rank of the matrix used to compute the Wald statistic. Determining that matrix rank from a numerical standpoint
can be problematic, in which case roblpr may overstate the number of constraints being tested and thereby incorrectly
compute the numerator degrees of freedom for the test. This rarely has a meaningful impact on the statistical test, but you
may wish to test only the unconstrained coefficients if the computed degrees of freedom are wrong.

For example, after the final example below, we could perform the test by typing test ftap == ftaret. In this case, the
degrees of freedom were correct, so we needn’t have gone to the trouble.

Description

The model of an autoregressive fractionally integrated moving average process of a time series of order (p; d; q), denoted
by ARFIMA(p; d; q), with mean �, may be written using operator notation as

�(L)(1� L)d (yt � �) = �(L)�t; �t � i:i:d:(0; �2� ) (1)

where L is the backward-shift operator,
�(L) = 1� �1L� � � � � �pL

p

�(L) = 1 + #1L+ � � �+ #qL
q , and (1� L)d is the fractional differencing operator defined by

(1� L)d =
1X
k=0

�(k � d)Lk

�(�d)�(k + 1)
(2)

with �(�) denoting the gamma (generalized factorial) function. The parameter d is allowed to assume any real value. The
arbitrary restriction of d to integer values gives rise to the standard autoregressive integrated moving average (ARIMA) model.
The stochastic process yt is both stationary and invertible if all roots of �(L) and �(L) lie outside the unit circle and jdj < 0.5.
The process is nonstationary for d � 0.5, as it possesses infinite variance; for example, see Granger and Joyeux (1980).

Assuming that d 2 [ 0; 0:5), Hosking (1981) showed that the autocorrelation function, �(�), of an ARFIMA process is
proportional to k2d�1 as k ! 1. Consequently, the autocorrelations of the ARFIMA process decay hyperbolically to zero as
k ! 1 in contrast to the faster, geometric decay of a stationary ARMA process. For d 2 ( 0; 0.5),

Pn
j=�n j�(j)j diverges as

n ! 1, and the ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process is said to
exhibit intermediate memory (anti-persistence), or long-range negative dependence, for d 2 (�0.5; 0). The process exhibits short
memory for d = 0, corresponding to stationary and invertible ARMA modeling. For d 2 [ 0.5; 1) the process is mean reverting,
even though it is not covariance stationary, as there is no long-run impact of an innovation on future values of the process.

If a series exhibits long memory, it is neither stationary (I(0)) nor is it a unit root (I(1)) process; it is an I(d) process,
with d a real number. A series exhibiting long memory, or persistence, has an autocorrelation function that damps hyperbolically,
more slowly than the geometric damping exhibited by “short memory” (ARMA) processes. Thus, it may be predictable at long
horizons. Long memory models originated in hydrology and have been widely applied in economics and finance. An excellent
survey of long memory models is given by Baillie (1996).

There are two approaches to the estimation of an ARFIMA (p; d; q) model: exact maximum likelihood estimation, as
proposed by Sowell (1992), and semiparametric approaches, as described in this insert. Sowell’s approach requires specification
of the p and q values, and estimation of the full ARFIMA model conditional on those choices. This involves all the attendant
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difficulties of choosing an appropriate ARMA specification, as well as a formidable computational task for each combination of
p and q to be evaluated. The methods described here assume that the short memory or ARMA components of the time series
are relatively unimportant, so that the long memory parameter d may be estimated without fully specifying the data-generating
process. These methods are thus described as semiparametric.

gphudak performs the Geweke and Porter-Hudak (GPH 1983) semiparametric log periodogram regression, often described
as the “GPH test,” for long memory (fractional integration) in a time series. The GPH method uses nonparametric methods—a
spectral regression estimator—to evaluate d without explicit specification of the ARMA parameters of the series. The series is
usually differenced so that the resulting d estimate will fall in the [�0.5; 0.5] interval.

Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to obtain an estimate of the memory parameter d
of a fractionally integrated process Xt in a model of the form

(1� L)
d
Xt = �t; (3)

where �t is stationary with zero mean and continuous spectral density f� (�) > 0: The estimate bd is obtained from the application
of ordinary least squares to

log (Ix (�s)) = bc� bd log ��1� ei�s
��2 + residual (4)

computed over the fundamental frequencies f�s = 2�s=n; s = 1; : : : ;m < ng. We define

!x (�s) =
1p
2�n

nX
t=1

Xte
it�s

as the discrete Fourier transform (DFT) of the time series Xt, Ix (�s) = !x (�s)!x (�s)
� as the periodogram, and xs =

log
��1� ei�s

�� : Ordinary least squares on (4) yields

bd = Pm
s=1 xs log Ix (�s)

2
Pm

s=1 x
2
s

(5)

Various authors have proposed methods for the choice of m, the number of Fourier frequencies included in the regression.
The regression slope estimate is an estimate of the slope of the series’ power spectrum in the vicinity of the zero frequency; if too
few ordinates are included, the slope is calculated from a small sample. If too many are included, medium and high-frequency
components of the spectrum will contaminate the estimate. A choice of

p
T or 0.5 for power is often employed. To evaluate

the robustness of the GPH estimate, a range of power values (from 0.40 to 0.75) is commonly calculated as well. Two estimates
of the d coefficient’s standard error are commonly employed: the regression standard error, giving rise to a standard t test, and
an asymptotic standard error, based upon the theoretical variance of the log periodogram of �2=6. The statistic based upon that
standard error has a standard normal distribution under the null.

modlpr computes a modified form of the GPH estimate of the long memory parameter, d, of a time series, proposed by
Phillips (1999a, 1999b). Phillips (1999a) points out that the prior literature on this semiparametric approach does not address
the case of d = 1, or a unit root, in (3), despite the broad interest in determining whether a series exhibits unit-root behavior or
long memory behavior, and his work showing that the bd estimate of (5) is inconsistent when d > 1; with bd exhibiting asymptotic
bias toward unity. This weakness of the GPH estimator is solved by Phillips’ modified log periodogram regression estimator, in
which the dependent variable is modified to reflect the distribution of d under the null hypothesis that d = 1. The estimator
gives rise to a test statistic for d = 1 which is a standard normal variate under the null. Phillips suggests that deterministic
trends should be removed from the series before application of the estimator. Accordingly, the routine will automatically remove
a linear trend from the series. This may be suppressed with the notrend option. The comments above regarding power apply
equally to modlpr.

The Phillips (1999b) modification of the GPH estimator is based on an exact representation of the DFT in the unit root case.
The modification expresses

!x (�s) =
!u (�s)

1� ei�s
� ei�s

1� ei�s
Xnp
2�n

and the modified DFT as

�x (�s) = !x (�s) +
ei�s

1� ei�s
Xnp
2�n
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with associated periodogram ordinates Iv (�s) = �x (�s)�x (�s)
� (Phillips 1999b, 9). He notes that both �x (�s) and, thus, Iv (�s)

are observable functions of the data. The log-periodogram regression is now the regression of log Iv (�s) on as = log
��1� ei�s

��.
Defining �a = m�1

Pm
s=1 as and xs = as � �a; the modified estimate of the long-memory parameter becomes

~d =

Pm
s=1 xs log I� (�s)

2
Pm

s=1 x
2
s

(6)

Phillips proves that, with appropriate assumptions on the distribution of �t; the distribution of ~d follows

p
m
�
~d� d

�
! N

�
0;
�2

24

�
(7)

in distribution, so ~d has the same limiting distribution at d = 1 as does the GPH estimator in the stationary case so ~d is consistent
for values of d around unity. A semiparametric test statistic for a unit root against a fractional alternative is then based upon the
statistic (Phillips 1999a, 10)

zd =

p
m
�
~d� 1

�
�=24

(8)

with critical values from the standard normal distribution. This test is consistent against both d < 1 and d > 1 fractional
alternatives.

roblpr computes the Robinson (1995) multivariate semiparametric estimate of the long memory (fractional integration)
parameters, d(g), of a set of G time series, y(g), g = 1; G with G � 1. When applied to a set of time series, the d(g) parameter
for each series is estimated from a single log-periodogram regression which allows the intercept and slope to differ for each
series. One of the innovations of Robinson’s estimator is that it is not restricted to using a small fraction of the ordinates of the
empirical periodogram of the series, that is, the reasonable values of power need not exclude a sizable fraction of the original
sample size. The estimator also allows for the removal of one or more initial ordinates and for the averaging of the periodogram
over adjacent frequencies. The rationale for using non-default values of either of these options is presented in Robinson (1995).

Robinson (1995) proposes an alternative log-periodogram regression estimator which he claims provides “modestly superior
asymptotic efficiency to �d (0)”, ( �d (0) being the Geweke and Porter-Hudak estimator) Robinson (1995, 1052). Robinson’s
formulation of the log-periodogram regression also allows for the formulation of a multivariate model, providing justification for
tests that different time series share a common differencing parameter. Normality of the underlying time series is assumed, but
Robinson claims that other conditions underlying his derivation are milder than those conjectured by GPH.

We present here Robinson’s multivariate formulation, which applies to a single time series as well. Let Xt represent a
G-dimensional vector with gth element Xgt; g = 1; : : : ; G. Assume that Xt has a spectral density matrix s�

�� e
ij�f (�) d�, with

(g; h) element denoted as fgh (�). The gth diagonal element, fgg (�), is the power spectral density of Xgt. For 0 < Cg <1
and �1=2 < dg < 1=2, assume that fgg (�) � Cg�

�2dg as �! 0+ for g = 1; : : : ; G: The periodogram of Xgt is then denoted
as

Ig (�) = (2�n)�1
�����
nX
t=1

Xgte
it�

�����
2

; g = 1; : : : ; G (9)

Without averaging the periodogram over adjacent frequencies nor omission of l initial frequencies from the regression, we may
define Ygk = log Ig (�k). The least squares estimates of c = (c1; : : : ; cG)

0 and d = (d1; : : : ; dG)
0 are given by�

~c
~d

�
= vec

�
Y 0Z(Z 0Z)�1

	
(10)

where Z = (Z1; : : : ; Zm)
0 ; Zk = (1;�2 log �k)

0, Y = (Y1; : : : ; YG) ; and Yg = (Yg;1; : : : ; Yg;m)
0 for m periodogram

ordinates. Standard errors for ~dg and for a test of the restriction that two or more of the dg are equal may be derived from the
estimated covariance matrix of the least squares coefficients. The standard errors for the estimated parameters are derived from
a pooled estimate of the variance in the multivariate case, so that their interval estimates differ from those of their univariate
counterparts. Modifications to this derivation when the frequency-averaging (j) or omission of initial frequencies (l) options are
selected may be found in Robinson (1995).

Examples

Data from Terence Mills’ Econometric Analysis of Financial Time Series on UK FTA All Share stock returns (ftaret) and
dividends (ftadiv) are analyzed.



Stata Technical Bulletin 43

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tsset

time variable: month, 1965m1 to 1995m12

. gphudak ftaret,power(0.5 0.6 0.7)

GPH estimate of fractional differencing parameter

------------------------------------------------------------------------------

Asy.

Power Ords Est d StdErr t(H0: d=0) P>|t| StdErr z(H0: d=0) P>|z|

------------------------------------------------------------------------------

.50 20 -.00204 .160313 -0.0127 0.990 .187454 -0.0109 0.991

.60 35 .228244 .145891 1.5645 0.128 .130206 1.7529 0.080

.70 64 .141861 .089922 1.5776 0.120 .091267 1.5544 0.120

------------------------------------------------------------------------------

. modlpr ftaret, power(0.5 0.55:0.8)

Modified LPR estimate of fractional differencing parameter

------------------------------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t| z(H0: d=1) P>|z|

------------------------------------------------------------------------------

.50 19 .0231191 .139872 0.1653 0.870 -6.6401 0.000

.55 25 .2519889 .1629533 1.5464 0.135 -5.8322 0.000

.60 34 .2450011 .1359888 1.8016 0.080 -6.8650 0.000

.65 46 .1024504 .1071614 0.9560 0.344 -9.4928 0.000

.70 63 .1601207 .0854082 1.8748 0.065 -10.3954 0.000

.75 84 .1749659 .08113 2.1566 0.034 -11.7915 0.000

.80 113 .0969439 .0676039 1.4340 0.154 -14.9696 0.000

------------------------------------------------------------------------------

. roblpr ftaret

Robinson estimates of fractional differencing parameter

-------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t|

-------------------------------------------------------

.90 205 .1253645 .0446745 2.8062 0.005

-------------------------------------------------------

. roblpr ftap ftadiv

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205

-------------------------------------------------------------

Variable | Est d Std Err t P>|t|

-----------------+-------------------------------------------

ftap | .8698092 .0163302 53.2640 0.000

ftadiv | .8717427 .0163302 53.3824 0.000

-------------------------------------------------------------

Test for equality of d coefficients: F(1,406) = .00701 Prob > F = 0.9333

. constraint define 1 ftap=ftadiv

. roblpr ftap ftadiv ftaret, c(1)

Robinson estimates of fractional differencing parameters

Power = .90 Ords = 205

-------------------------------------------------------------

Variable | Est d Std Err t P>|t|

-----------------+-------------------------------------------

ftap | .8707759 .0205143 42.4473 0.000

ftadiv | .8707759 .0205143 42.4473 0.000

ftaret | .1253645 .0290116 4.3212 0.000

-------------------------------------------------------------

Test for equality of d coefficients: F(1,610) = 440.11 Prob > F = 0.0000

The GPH test, applied to the stock returns series, generates estimates of the long memory parameter that cannot reject the
null at the ten percent level using the t test. Phillips’ modified LPR, applied to this series, finds that d = 1 can be rejected for
all powers tested, while d = 0 (stationarity) may be rejected at the ten percent level for powers 0.6, 0.7, and 0.75. Robinson’s
estimate for the returns series alone is quite precise. Robinson’s multivariate test, applied to the price and dividends series,
finds that each series has d > 0. The test that they share the same d cannot be rejected. Accordingly, the test is applied to all
three series subject to the constraint that price and dividends series have a common d, yielding a more precise estimate of the
difference in d parameters between those series and the stock returns series.



44 Stata Technical Bulletin STB-57

Saved Results

gphudak saves in e():

e(N powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(gph) matrix of results, 9 by N powers

modlpr saves in e():

e(N powers) number of powers (scalar)

e(depvar) dependent variable name (macro)

e(modlpr) matrix of results, 8 by N powers

roblpr saves the following scalars in r():

r(N) number of observations

r(rob) d estimate

r(se) estimated standard error of d

r(t) t statistic

r(p) p-value of t statistic

If more than one power is specified in roblpr, the saved results pertain to the last power used.
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sts17 Compacting time series data

Christopher F. Baum, Boston College, baum@bc.edu

Abstract: tscollap provides the ability to compact data of monthly, quarterly or half-yearly frequencies to a lower frequency
by one or more methods (e.g., average, sum, last value per period, and so on).

Keywords: time series, data frequency, collapse.

Syntax

tscollap clist , to(freq)
�
generate(freqvar)

�
where clist is either�

(stat)
�

varlist
� �

(stat)
�
: : :

�
or �

(stat) target var = varname
�
target var = varname : : :

� � �
(stat) : : :

��
or any combination of the varlist or target var forms, and stat is one of
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mean mean over interval
sum sum over interval
gmean geometric mean over interval (for a positive variable)
first first observation in the interval
last last observation in the interval

If stat is not specified, mean is assumed.

The tscollap command is for use with time series data of monthly, quarterly, or half-yearly frequency. You must tsset
your data before using this command; see [U] tsset. If the data are a panel of time series, that is, if a panelvar has been specified
in tsset, the specification of the panel identification variable will automatically be retained in the resulting dataset (it need not,
and should not, be specified in the varlist). Time series operators may not be used.

The tsmktim command (described in dm81; see pages 2–4) is a convenient way to generate the appropriate tsset command
if you do not already have a time variable in the data.

Options

to(freq) specifies the target frequency, which must be specified. It may take on any value lower than the current value as
understood by tsset. freq must be given as q, h, y in either lowercase or uppercase.

generate(freqvar) may be used to specify the name of the new tsset variable, which will be formatted at the target frequency.

Description

tscollap converts the time series data in memory into a dataset of means, sums, or selected values taken from the specified
interval. It is a variant of collapse, which automatically forms the groups over which statistics are to be calculated from an
understanding of the calendar data. For instance, monthly data may be converted to quarterly, half-yearly, or annual (yearly)
data by specifying to(q), to(h), or to(y), respectively. Data may be averaged over the interval (using either an arithmetic
or geometric mean) or summed (as would be appropriate for income statement data). Either the first or the last observation
of each interval may be selected (so that, e.g., end-of-period values may be readily assembled). Since its syntax (and internal
logic) is taken from collapse, more than one statistic may be generated from a single variable; for example, both average and
end-of-period values may be specified by using different target var names). tscollap embodies the June, 2000 correction to
collapse.

All variables not specified in the target list are dropped (including the current tsset variable), and a new tsset variable
is generated as freq freq (as long as that variable does not already exist). The generate option may be used to customize the
new tsset variable. If a panelid variable is in use by tsset, it should not be listed; it will be automatically retained.

Saved results

tscollap saves the items returned by tsset in r().

Remarks

tscollap makes substantial use of gfilter, part of the egenmore package of N. J. Cox, information about which is
available by issuing the command webseek egenmore.

Examples

Monthly data from Terence Mills’ Econometric Analysis of Financial Time Series on UK FTA All Share stock prices (ftap)
and dividends (ftadiv) are compacted to a quarterly frequency.

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tscollap ftap ftadiv, to(q)

Converting from M to Q

time variable: q_q, 1965q1 to 1995q4

. use http://fmwww.bc.edu/ec-p/data/Mills2d/fta.dta

. tscollap ftap (first) ftapf=ftap (last) ftapl=ftap, to(q) gen(qtr)

Converting from M to Q

time variable: qtr, 1965q1 to 1995q4

In the first instance, the price and dividend series are averaged over the quarter, and other series in the original dataset discarded.
In the second example, the price series is used to generate three variables: the average price per quarter, the price in the first
month of each quarter, and the price in the last month of each quarter, as ftap, ftapf, and ftapl, respectively.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (979–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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