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stata52 Origin/noOrigin option added to sts graph command

The sts graph command now plots the Kaplan–Meier survival curve starting at t = 0; see [R] st sts graph. This is now
the default. Specifying the new option noorigin returns to the previous behavior of having the graph start at the first observed
exit time (failure or censoring). All other options for this command are unchanged.

Syntax

sts graph

�
if exp

� �
in range

� �
, by(varlist) strata(varlist) adjustfor(varlist) nolabel failure

gwood level(#) lost enter separate tmin(#) tmax(#) xasis yasis noborder noshow

�
noorigin graph options

�
The noorigin option is new. See [R] st sts graph for a description of the other options.

noorigin sets the earliest time plotted to correspond to the first failure or censoring time. If this option is not specified, zero
is the earliest time plotted.

Output

Using the cancer data distributed with Stata, we will plot the Kaplan–Meier product-limit estimate for patients on drug 2,
and we will repeat the plot specifying the noorigin option which will cause the plot to begin at studytim = 6, the first exit
time for patients on drug 2.

. use cancer.dta

(Patient Survival in Drug Trial)

. stset studytim died

(output omitted )
. sort studytim

. list if drug==2, noobs

studytim died drug age

6 1 2 67

6 0 2 65

7 1 2 58

9 0 2 56

10 0 2 49

(output omitted )

. sts graph if drug==2

( See Figure 1 below)

. sts graph if drug==2, noorigin

( See Figure 2 below)
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Figure 1. KM curve for patients on drug 2 Figure 2. KM curve for patients on drug 2; noorigin specified
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dm54 Capturing comments from data dictionaries

John R. Gleason, Syracuse University, loesljrg@ican.net

Data dictionaries are an effective way to import and export data: The data are transported in an ASCII text file (a reliable
mechanism on any reasonable computing platform), and the dictionary itself provides a clear description of the contents of the
data file. (See [R] infile (fixed format) for details.) More importantly, dictionaries can be freely commented: any line with the
character ‘*’ in the first column will be ignored by the infile command when it uses the dictionary to read the data. Comments
can thus be used to document the source of the data, or to explain details regarding the collection of the data—information that
ought to remain attached to the data. This insert presents a command (infilen) that creates a Stata dataset by infiling from a
fixed format data file, captures commentary from the data dictionary, and stores those comments as notes; see [R] notes.

To illustrate, consider the file mammals.dat (included with this insert) which begins thus:
dictionary {

*! Data originally published by Allison, T. & Cicchetti, D. V. (1976)

*! <Science, 194, 732-734>, as part of a study of correlates of sleep in

*! mammals; a subset (the first 3 variables below) appears in Table 6.6 of

*! Weisberg (1985) <Applied Regression, 2nd ed.; NY: Wiley; pp. 144-145>.

*!

*! The data show average values for 62 species of mammals; note that some

*! values are missing. The last 3 variables below (is_prey, expos_sl, and

*! indanger) are ordered categories, where 1 = least and 5 = most with

*! respect to the attribute in question. Note also that slow wave sleep

*! (swav_sl) is known as `non-dreaming' sleep, whereas paradoxical sleep

*! (pdox_sl) is known as `dreaming' sleep.

*

str25 species "Mammal species"

body_wt "Body Weight (kg)"

brain_wt "Brain Weight (g)"

swav_sl "Slow wave sleep (hrs/day)"

pdox_sl "Paradoxical sleep (hrs/day)"

totsleep "Total sleep (hrs/day)"

lifespan "Maximum life span (yrs)"

gestate "Gestation time (days)"

byte is_prey "Likely to be preyed upon?"

byte expos_sl "Exposed during sleep?"

byte indanger "In danger from other animals?"

}

"African elephant" 6654 5712 . . 3.3 38.6 645 3 5 3

"African giant pouched rat" 1 6.6 6.3 2 8.3 4.5 42 3 1 3

(output omitted )

The command
. infile using mammals.dat

will create a Stata dataset with 11 usefully labeled variables, but the information contained in the lines beginning with the
characters ‘*!’ will be left behind. By contrast, the command

. infilen using mammals.dat

creates the same Stata dataset but also imbeds the lines marked with ‘*!’ as 11 notes.

The syntax of infilen is

infilen using dfilename
�
if exp

� �
in range

� �
, automatic using(filename2) clear nlines(#)

�
The option nlines controls the number of data dictionary lines that will be scanned for comments; the default value of

# is 50. Otherwise, the syntax of infilen is exactly that of infile for reading data with a dictionary; see [R] infile (fixed
format) for details.

In fact, the command
. infilen using mammals.dat

first issues the command
. infile using mammals.dat

Then, infilen re-reads the data dictionary in mammals.dat, searching for lines where the string ‘*!’ appears in the first two
columns. This marks a special type of comment, the kind that if found in an ado-file, will be echoed to the screen by which;
see [R] which. infilen captures such comments and then does the equivalent of

. note: text of comment
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for each ‘*!’ comment. Thus, continuing our example, after the infilen command there will be 11 notes attached to the current
dataset:

. notes

_dta:

1. Data originally published by Allison, T. & Cicchetti, D. V. (1976)

2. <Science, 194, 732-734>, as part of a study of correlates of sleep in

3. mammals; a subset (the first 3 variables below) appears in Table 6.6 of

4. Weisberg (1985) <Applied Regression, 2nd ed.; NY: Wiley; pp. 144-145>.

5. .

6. The data show average values for 62 species of mammals; note that some

7. values are missing. The last 3 variables below (is_prey, expos_sl, and

8. indanger) are ordered categories, where 1 = least and 5 = most with

9. respect to the attribute in question. Note also that slow wave sleep

10. (swav_sl) is known as 'non-dreaming' sleep, whereas paradoxical sleep

11. (pdox_sl) is known as 'dreaming' sleep.

Remarks

Ordinary comments (those that begin with ‘*’ only) are simply ignored, while every comment with ‘*!’ in the first two
columns is stored in a note. Blank comments are often used to make commentary more readable; for compatibility with the
notes command, such comments are rendered non-blank by saving the single character ‘.’. Note 5 (above) provides an example.

Instances of the left-quote (‘`’) character will be translated into right-quotes (‘'’); otherwise, some part of the comment
will be interpreted as a macro expansion. Unfortunately, there is no way to perform a similar translation of the double-quote
character (‘"’): Comments to be saved as notes may not contain ‘"’, and its presence will produce an unhelpful error message.
(On the other hand, the characters ‘`’ and ‘"’ have no special status in ordinary comments.)

A maximum of 80 characters following the string ‘*!’ will be captured from comments.

Acknowledgment
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gr28 A graphical procedure to test equality of variances

Aurelio Tobias, Institut Municipal d’Investigacio Medica (IMIM), Barcelona, atobias@imim.es

The problem of testing the equality of several variances arises in many areas. There are a wide variety of tests available
for testing equality of variances of normal populations. In Stata, only Bartlett’s (1937) test for equality of variances is available
in the oneway command.

The grvar command performs a graphical display for testing the equality of variances of normal populations. Rao and
Krishna (1997) following Ott’s (1967) graphical procedure for testing the equality of means (ANOM) have developed this method.
This graph tests equality of two or more variances from normal populations, simultaneously demonstrating statistical (the real
presence of an effect) and engineering significance (the magnitude of seriousness of the effect). This graphical method could be
more useful for non-statisticians than classical tests for equal variances, becoming a good supplement to the oneway command.

Graphical method procedure

Consider k independent samples, the ith of which is of size ni, obtained from k normal populations with means �i and
variances �2i . We would like to test the null hypothesis �2i = �2, for all i, against the alternative that at least one equality does
not hold. Then, we should follow four steps:

1. Calculate the variance of the ith sample (S2
i ), and then S

2=3
i , for i = 1; : : : ; k.

2. Calculate: Ai =
(9ni � 11)

9(ni � 1)
, Ci =

18(ni � 1)

(9ni � 11)2
, N =

Pk
i=1 ni, ti =

S
2=3
i

Ai

,

�tw =
1

N

kX
i=1

niti, SE(ti � �tw) =
�tw

N

vuutN(N � 2ni)Ci +

kX
i=1

n2iCi

3. Calculate the lower and upper decision lines (LDL and UDL) for the comparison of each of the ti terms: LDL =
�tw � za=2kSE(ti � �tw), UDL = �tw + za=2kSE(ti � �tw), where za=2k is the upper (a=2k) percentage point of the
standard normal distribution.

4. Finally, plot ti against LDL and UDL.
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Derivations of the formulas are given in the appendix of Rao and Krishna (1997).

If any of the points plotted are outside the decision lines, we can reject the null hypothesis and conclude that there are
statistically significant differences among the population variances.

Syntax

The grvar command works on a dataset containing the estimated standard deviation, sd, and the sample size, n, for each
sample or study. The syntax is as follows:

grvar sd n
�
if exp

� �
in range

� �
, id(strvar) level(#) graph options

�
Options

id(strvar) is used to label the studies. If the data contain a labeled numeric variable, it can also be used.

level(#) specifies the level of significance of the test, in percent. The default is level(5) (sic).

graph options are any of the options allowed with graph, twoway except xlabel(), t2(), b2(), yline(), symbol(), pen(),
and connect().

Example

The grvar command has been tested using the example supplied by Rao and Krishna (1997). We have eight samples we
call A, B, C, D, E, F, G, and H of lengths of the third molar of eight species of the Condylarth Hyposodus (Sokal and Rohlf
1969, 370–371).

. describe

Contains data from sokal.dta

obs: 8

vars: 4

size: 88

------------------------------------------------------------------------

1. sample byte %8.0g sample number

2. sampleid str1 %9s sample identification

3. n byte %8.0g sample size

4. sd float %9.0g standard deviation

------------------------------------------------------------------------

. list, noobs

sample sampleid n sd

1 A 18 .2658947

2 B 13 .3803945

3 C 17 .153948

4 D 16 .2891366

5 E 8 .4678675

6 F 11 .4207137

7 G 10 .2812472

8 H 10 .4828043

. grvar sd n, id(sampleid)

 

Sample number
1 2 3 4 5 6 7 8

.244335

.698497

A

B

C

D

E

F

G

H

Figure 1. Graphical display to test equality of variances
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We observe from Figure 1, that sample C is allocated outside its lower decision line. Hence we conclude that the population
variances are not equal. Sokal and Rohlf (1969) using Bartlett’s test at the 5% level obtained the same conclusion. Also Rao
and Krishna (1997) got the same result using the Neyman–Pearson test, the Lehmann test, the Q test, the Bartlett 3 test, the
Lehmann 2 test, and the Samiuddin–Atiqullah test with their respective critical values at the 5% level.

Individual or frequency records

As with other Stata commands, grvar works on data contained in frequency records, one for each sample or study. If
we have primary data, that is individual records, we must convert to frequency records using the collapse and byvar Stata
commands.

References
Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society, Series A 160: 268–282.

Ott, E. R. 1967. Analysis of means—a graphical procedure. Industrial and Quality Control 24: 101–109.

Rao, C. V. and S. H. Krishna. 1997. A graphical method for testing the equality of several variances. Journal of Applied Statistics 24: 279–287.

Sokal, R. R. and J. F. Rohlf. 1969. Biometry. San Francisco, CA: W. H. Freeman.

sbe16.1 New syntax and output for the meta-analysis command

Stephen Sharp, London School of Hygiene and Tropical Medicine, stephen.sharp@lshtm.ac.uk
Jonathan Sterne, United Medical and Dental Schools, UK, j.sterne@umds.ac.uk

The command meta, which performs the statistical methods involved in a systematic review of a set of individual studies,
reporting the results in text and also optionally in a graph, was released in STB-38 (Sharp and Sterne 1997). This re-release
contains a more flexible syntax than the earlier version and new-style output.

Syntax

The command meta works on a dataset containing an estimate of the effect and its variability for each study. The syntax is

meta

�
theta j exp(theta)

	 �
se theta j var theta j ll ul

�
cl
�	 �

if exp
� �

in range
��

, var ci eform print ebayes level(#) graph(string) id(varname)

fmult(#) boxysca(#) boxshad(#) cline ltrunc(#) rtrunc(#) graph options
�

With this new syntax, the user provides the effect estimate as theta (i.e., a log risk ratio, a log odds ratio, or other measure
of effect). Likewise, the user supplies a measure of theta’s variability (i.e., its standard error, se theta, or its variance, var theta).
Alternatively, the user provides exp(theta) (e.g. a risk ratio or odds ratio) and its confidence interval, (ll, ul). The options remain
the same as in the original version of meta. Type help meta for details.

Required input variables

theta the effect estimate
se theta the corresponding standard error

or

theta the effect estimate
var theta the corresponding variance
NB: (var option must be included)

or

exp(theta) the risk (or odds) ratio
ll the lower limit of the risk ratio’s confidence interval
ul the upper limit of the risk ratio’s confidence interval
cl optional (see below)
NB: (ci option must be included)
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Optional input variable

cl contains the confidence level of the confidence interval defined by ll and ul. If cl is not provided, the procedure assumes
that each confidence interval is at the 95% level. cl allows the user to provide the confidence level, by study, when the confidence
interval is not at the default level. cl can be specified with or without a decimal point. For example, .90 and 90 are equivalent
and may be mixed (i.e., 90, .95, 80, .90 etc.).

Example of new syntax and output

Below we illustrate the new-style command syntax and output from meta applied to the example in Sharp and Sterne
(1997), based on nine randomized clinical trials of the use of diuretics for pre-eclampsia in pregnancy (Collins et al. 1985).

. use diuretic, clear

(Diuretics and pre-eclampsia)

. describe

Contains data from diuretic.dta

obs: 9 Diuretics and pre-eclampsia

vars: 6

size: 189

-------------------------------------------------------------------------------

1. trial byte %9.0g trlab trial identity number

2. trialid str8 %9s trial first author

3. nt int %9.0g total treated patients

4. nc int %9.0g total control patients

5. rt int %9.0g pre-eclampsia treated

6. rc int %9.0g pre-eclampsia control

-------------------------------------------------------------------------------

With the earlier version of meta it was necessary to calculate the estimated effect and standard error on the log scale. With
the re-release, the user can specify either the odds ratio (on either the original or log scale), the standard error, the variance, or
the confidence limits. So for example, suppose the odds ratio and 90% confidence limits are calculated.

. gen or=(rt/(nt-rt))/(rc/(nc-rc))

. gen l90=or/exp(1.645*sqrt((1/rc)+(1/(nc-rc))+(1/rt)+(1/(nt-rt))))

. gen u90=or*exp(1.645*sqrt((1/rc)+(1/(nc-rc))+(1/rt)+(1/(nt-rt))))

. l l90 or u90, noobs

l90 or u90

.5404617 1.042735 2.011792

.2257975 .3970588 .698217

.162642 .3255814 .651758

.093229 .2291667 .5633156

.1426823 .2488202 .4339115

.6090319 .7431262 .9067448

.4347324 .7698574 1.363322

.7602696 2.970588 11.60693

.7458201 1.144886 1.757481

. gen cl=90

. meta or l90 u90 cl, eform ci

Meta-analysis (exponential form)

| Pooled 95% CI Asymptotic No. of

Method | Est Lower Upper z_value p_value studies

-------+----------------------------------------------------

Fixed | 0.672 0.564 0.800 -4.454 0.000 9

Random | 0.596 0.400 0.889 -2.537 0.011

Test for heterogeneity: Q= 27.260 on 8 degrees of freedom (p= 0.001)

Moment-based estimate of between studies variance = 0.230

Note that although in this example the odds ratios and confidence intervals had to be calculated before the meta command
could be used, in practice such variables may already have been created in the dataset for other purposes, and the new syntax
saves the user from having to generate the log odds ratio and standard error. If the effect estimate is a difference in means, the
same alternatives for specifying the variability are available.

Graphics

The graphics options remain as in the earlier version of the command (Sharp and Sterne 1997).
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sbe21 Adjusted population attributable fractions from logistic regression

Anthony R. Brady, Public Health Laboratory Service Statistics Unit, UK, tbrady@phls.co.uk

The population attributable fraction (or risk) is an epidemiological measure which attempts to quantify the proportion of
disease incidence which is due to a particular factor (or “exposure”). Implicit in this measure are very strong assumptions
about causality, namely that removing the exposure from the population would reduce disease incidence. However, where this
assumption is met the attributable fraction can provide useful insights into the important causes of disease and thereby inform
intervention strategies.

The usual measure of attributable fraction (such as that reported by Stata’s epitab cc command) is an unadjusted measure
which can be misleading in the presence of confounding. Estimating the attributable fraction (AF) from within a logistic regression
framework enables confounders to be taken into account and allows estimation of the summary attributable fraction for a set of
exposures. This might be of interest to those planning an intervention “package”.

aflogit recovers estimates of the population attributable fraction for those terms specified by the user from the most recent
unconditional logistic regression model. It also reports a summary attributable fraction for all the terms combined. Asymptotic
standard errors and 95% confidence intervals are calculated and reported. Note that aflogit may also be used following Poisson
regression (where the attributable fraction is interpreted as the proportion of the disease rate which is due to the exposure), but
cannot be used after conditional logistic regression (clogit).

Negative estimates of the attributable fraction correspond to protective effects (relative risk < 1) where the interpretation
is the proportion increase expected in the number with the disease if the protective exposure were absent from the population.
Perhaps confusingly this is not the usual definition of the preventable fraction or the prevented fraction (see Last 1983).

Background

The unadjusted population attributable fraction is given by

AF =
Pr(disease)� Pr(diseasejnot exposed)

Pr(disease)

which is equivalent to
Observed no: ill� expected no: ill on removal of the exposure

Observed no: ill

This can be rearranged to give

AF = Pr(exposedjdisease)
�

1� 1

RR

�
where RR is the relative risk. So all that is needed to estimate the AF is the distribution of exposure among the ill,
Pr(exposed j disease), and the relative risk. The distribution of exposure among the ill is assumed to apply to the popula-
tion from which the sample was taken. Therefore, any sampling procedure which does not randomly sample those with the
disease will invalidate estimation of the AF. Under the rare disease assumption, the relative risk is approximated by the odds
ratio and so case–control data can be used to estimate the AF. This is the formula the epitab cc command uses.

Notice that the attributable fraction increases both as the exposure becomes more common and as the relative risk becomes
larger. In addition, uncertainty in the estimated AF will come not only from the uncertainty in the relative risk but also from
the distribution of exposure. This means that a risk factor which is significantly different from one may not necessarily have an
attributable fraction which is significantly bigger than zero.

The principle behind using logistic regression to estimate attributable fractions is to fit the required model and then calculate
the number of cases predicted by the model. This is done by generating the predicted probability of disease for each individual
in the model (using the predict command) and then summing over all individuals. If the model has been fitted to the entire
dataset then this should equal the observed number of cases of disease in the study. Next the exposure effect is “removed” from
the dataset by resetting exposure covariates to zero (or some reference level for continuous variables). The predict command
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is used again to generate the predicted probability of disease for each individual with the new covariate values but under the
same logistic model. Summing these probabilities gives the number of cases of disease one would expect if the exposure were
absent from the population. Calculating the AF is then a simple matter of applying the second equation above.

More formally, the adjusted attributable fraction is given by

b�A = 1� n0rz

n0rx

where n is the column vector of sample sizes, ni (�1 where records are on individuals), and rx and rz are vectors of predicted
probabilities from the model under the original covariates (x) and the modified covariates (z) respectively.

An asymptotic variance formula is given in Greenland and Drescher (1993), which they recommend be applied on the
log(1� AF) scale. This is most helpfully considered as

var(b�) = �E
O

�2�
varE

E2
+

varO

O2
� 2cov(O;E)

OE

�
where O and E refer to the number of observed and expected cases of disease respectively.

A different approach must be taken for case–control data since the Pr(disease) is fixed by the study design (0.5 if one control
per case is used). Bruzzi et al. (1985) explain this approach, although it is also presented by Greenland and Drescher (1993)
with some minor modifications. Essentially the method is to generalize the third equation to J strata (or levels of exposure)
which gives

AF = 1�
JX

j=0

�j

RRj

where �j = Pr(exposure group j j disease) and RRj is the relative risk comparing stratum j with stratum 0, the baseline group.
The RRj may of course be approximated by ORj if the rare disease assumption is justified. This simplifies to the third equation
when there are only two strata (exposed and not exposed)

AF = 1�
�
Pr(not exposedjdisease)

1
+

Pr(exposedjdisease)
RR

�
= 1� 1 + Pr(exposedjdisease)� Pr(exposedjdisease)

RR

= Pr(exposedjdisease)
�

1� 1

RR

�
The above generalized equation gives the summary attributable fraction for all the factors combined, that is, the proportion

of the disease which is due to all the exposures under consideration. In order to estimate the effect of one risk factor while
adjusting for other covariates, we modify the RRj to reflect the additional risk which the risk factor of interest contributes to
stratum j. Strata in which the risk factor does not appear therefore have RR = 1. The RRj for strata including the risk factor is
estimated by the adjusted odds ratio from the logistic regression model (making the rare disease assumption). Providing the risk
factor of interest is dichotomous and is not involved in any interactions, the estimate of the adjusted AF reduces to substituting
the adjusted odds ratio into the third equation. In the notation used by Greenland and Drescher (1993), the generalized equation
is b�A = 1� �̂0ŝ

where b� is a vector containing the b�j and bs is a vector of
1dRRj

.

The asymptotic variance of this measure has no simple form and aflogit uses just the first summand in Greenland and
Drescher’s formula, var(b�) � D0

�CD� , which they report gives results nearly identical to those based on the entire formula.

Syntax

The command aflogit may only be used after a logistic or poisson regression model has been fitted. The syntax is

aflogit

�
term

�
term : : :

�� �
weight

� �
if exp

� �
in range

�
�
, cc reference(term = #

�
term = # : : :

�
) level(#)

�
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fweights and aweights are allowed.

Without arguments, aflogit reports attributable fractions for all terms in the model. aflogit tries to pick up the same weights,
if and in clauses as used by the regression model, but users should manually specify these after the logit, blogit, and
poisson commands.

Options

cc indicates that the data come from an unmatched case–control study and the estimate will be based on the adjusted odds ratios.
The default is to assume the data come from a cross-sectional or cohort study and base the estimate of the attributable
fraction on the predicted probabilities. It is imperative to select this option if you have case–control data since the results
might be seriously misleading if you use the predicted probabilities.

reference determines the reference level (the non-exposure category) for each term in the model. By default this is zero for
every term. For continuous variables it may be desirable to set the reference level to a nonzero value (e.g. the mean for a
variable such as blood pressure).

level(#) specifies the significance level for confidence intervals of the coefficients.

Example: unmatched case–control data

Jacques Benichou (1991) calculated population attributable fraction estimates for a case–control study of oesophageal cancer
carried out by Tuyns et al. (1977). The main interest was in the proportion of cases attributable to excess alcohol consumption.
Various logistic regression models were fitted to allow for confounders (smoking and age) and for interactions between alcohol
consumption and the confounders. Alcohol consumption (the “exposure”) was collected as a four-level factor but was initially
used as a dichotomous factor (0 to 79 grams per day and 80 or more grams per day).

. use tuyns, clear

(Oesophageal cancer and alcohol)

. describe

Contains data from tuyns.dta

obs: 59 Oesophageal cancer and alcohol

vars: 7 17 Sep 1997 17:07

size: 649 (100.0% of memory free)

-------------------------------------------------------------------------------

1. alcohol byte %9.0g alcl g/day

2. agegp byte %9.0g agel Age group

3. smoke byte %9.0g smokel g/day

4. case byte %9.0g Cancer case?

5. n byte %8.0g Frequency

6. alc80 byte %9.0g Alcohol 0-79 vs 80+

7. alc40 byte %9.0g Alcohol 0-39 vs 40+

-------------------------------------------------------------------------------

Sorted by: case

. cc case alc80 [fw=n]

Alcohol 0-79 vs 80+

Proportion

| Exposed Unexposed | Total Exposed

-----------------+------------------------+----------------------

Cases | 96 104 | 200 0.4800

Controls | 109 666 | 775 0.1406

-----------------+------------------------+----------------------

Total | 205 770 | 975 0.2103

| |

| Pt. Est. | [95% Conf. Interval]

|------------------------+----------------------

Odds ratio | 5.640085 | 4.003217 7.94673 (Cornfield)

Attr. frac. ex. | .8226977 | .7502009 .8741621 (Cornfield)

Attr. frac. pop | .3948949 |

+-----------------------------------------------

chi2(1) = 110.26 Pr>chi2 = 0.0000

Thus using the cc command we estimate that 39% of the oesophageal cancers were attributable to alcohol consumptions
above 80 g/day. Note there is no confidence interval around this estimate. We can obtain the same result using logistic regression
and aflogit but with the added benefit of a confidence interval.
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. logistic case alc80 [fw=n]

Logit Estimates Number of obs = 975

chi2(1) = 96.43

Prob > chi2 = 0.0000

Log Likelihood = -446.52782 Pseudo R2 = 0.0975

------------------------------------------------------------------------------

case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

alc80| 5.640085 .9883491 9.872 0.000 4.00059 7.951467

------------------------------------------------------------------------------

. aflogit, cc

Population attributable fraction from logistic regression

Case-control data (n=975)

Using weights [fweight= n]

Term Ref. A.F. s.e. [95% Conf. Int.]*

----------------------------------------------------------

alc80 0 0.3949 0.0409 0.3093 0.4699

----------------------------------------------------------

TOTAL 0.3949 0.0409 0.3093 0.4699

* CI calculated on log(1-AF) scale

The logistic regression framework also allows us to extend the model to adjust for potential confounders (age-group and
smoking in this example) and even to allow for interactions between the exposure and confounders; for instance, excess alcohol
consumption may have a worse effect depending on age-group. First, allowing for potential confounders we have

. xi: logistic case alc80 i.agegp*i.smoke [fw=n]

i.agegp Iagegp_0-2 (naturally coded; Iagegp_0 omitted)

i.smoke Ismoke_0-2 (naturally coded; Ismoke_0 omitted)

i.agegp*i.smoke IaXs_#-# (coded as above)

Logit Estimates Number of obs = 975

chi2(9) = 232.84

Prob > chi2 = 0.0000

Log Likelihood = -378.32187 Pseudo R2 = 0.2353

------------------------------------------------------------------------------

case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

alc80 | 4.88238 .9426293 8.213 0.000 3.3442 7.128055

Iagegp_1 | 11.81257 9.13967 3.191 0.001 2.592679 53.8195

Iagegp_2 | 27.87187 20.35787 4.556 0.000 6.659488 116.6518

Ismoke_1 | 6.390786 5.161163 2.297 0.022 1.312589 31.11572

Ismoke_2 | 2.33e-07 1.02e-07 -34.902 0.000 9.88e-08 5.49e-07

IaXs_1_1 | .2689882 .2421917 -1.458 0.145 .0460605 1.570863

IaXs_1_2 | 3.28e+07 2.38e+07 23.816 0.000 7889856 1.36e+08

IaXs_2_1 | .221224 .1856753 -1.797 0.072 .0426983 1.146182

IaXs_2_2 | 2.20e+07 . . . . .

------------------------------------------------------------------------------

Note: 33 failures and 0 successes completely determined.

. aflogit alc80, cc

Population attributable fraction from logistic regression

Case-control data (n=975)

Using weights [fweight= n]

Term Ref. A.F. s.e. [95% Conf. Int.]*

----------------------------------------------------------

alc80 0 0.3817 0.0442 0.2887 0.4625

----------------------------------------------------------

TOTAL 0.3817 0.0442 0.2887 0.4625

* CI calculated on log(1-AF) scale

The odds ratio on alcohol changed little (from 5.6 to 4.9) when allowing for smoking and age and so the adjusted attributable
fraction is very similar (38%). Now allowing alcohol consumption to interact with age-group, we have

. xi: logistic case i.agegp*alc80 i.agegp*i.smoke [fw=n]

i.agegp Iagegp_0-2 (naturally coded; Iagegp_0 omitted)

i.agegp*alc80 IaXal1_# (coded as above)

i.smoke Ismoke_0-2 (naturally coded; Ismoke_0 omitted)

i.agegp*i.smoke IaXs_#-# (coded as above)

Note: Iagegp_1 dropped due to collinearity.

Note: Iagegp_2 dropped due to collinearity.
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Logit Estimates Number of obs = 975

chi2(11) = 233.13

Prob > chi2 = 0.0000

Log Likelihood = -378.1796 Pseudo R2 = 0.2356

------------------------------------------------------------------------------

case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

Iagegp_1 | 12.75294 10.61766 3.058 0.002 2.494186 65.20659

Iagegp_2 | 31.46491 24.56128 4.418 0.000 6.813728 145.3008

alc80 | 6.527618 4.431543 2.763 0.006 1.725367 24.69608

IaXalc_1 | .8002673 .6210458 -0.287 0.774 .1748485 3.662759

IaXalc_2 | .7024653 .5052614 -0.491 0.623 .1715466 2.876521

Ismoke_1 | 6.226884 5.062682 2.249 0.024 1.265357 30.6428

Ismoke_2 | 2.14e-07 1.25e-07 -26.312 0.000 6.83e-08 6.72e-07

IaXs_1_1 | .275004 .2492789 -1.424 0.154 .0465332 1.625232

IaXs_1_2 | 3.58e+07 . . . . .

IaXs_2_1 | .22786 .1924345 -1.751 0.080 .0435315 1.192705

IaXs_2_2 | 2.38e+07 1.74e+07 23.318 0.000 5716679 9.94e+07

------------------------------------------------------------------------------

Note: 33 failures and 0 successes completely determined.

. aflogit alc80 IaXalc*, cc

Population attributable fraction from logistic regression

Case-control data (n=975)

Using weights [fweight= n]

Term Ref. A.F. s.e. [95% Conf. Int.]*

----------------------------------------------------------

alc80 0 0.4065 0.0630 0.2693 0.5179

IaXalc_1 0 -0.0312 . . .

IaXalc_2 0 -0.1398 . . .

----------------------------------------------------------

TOTAL 0.3803 0.0445 0.2866 0.4616

* CI calculated on log(1-AF) scale

There appears to be little evidence of an interaction between age and alcohol consumption and so the attributable fraction
is unchanged. The negative values of the attributable fraction indicate that removing an exposure would make the expected
number of cases larger than that observed. Hence, removing the slight protection afforded by being in the oldest age-group would
result in a 14% increase in the observed number of cases of oesophageal cancer in the population. Note that algebraically the
population attributable fraction has bounds [�1; 1 ].

The estimates of attributable fraction produced by aflogit are identical to those calculated by Benichou and the standard
errors are very similar (within 3%).

Saved results

aflogit saves the following results in the S macros:

S 1 The summary attributable fraction estimate
S 2 SE of the summary attributable fraction estimate
S 3 Lower confidence limit of the summary attributable fraction
S 4 Upper confidence limit of the summary attributable fraction
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sbe22 Cumulative meta-analysis

Jonathan Sterne, United Medical and Dental Schools, UK, j.sterne@umds.ac.uk

Meta-analysis is used to combine the results of several studies, and the Stata command meta (Sharp and Sterne 1997 and
sbe16.1 in this issue) can be used to perform meta-analyses and graph the results. In cumulative meta-analysis (Lau et al. 1992),
the pooled estimate of the treatment effect is updated each time the results of a new study are published. This makes it possible
to track the accumulation of evidence on the effect of a particular treatment.

The command metacum performs cumulative meta-analysis (using fixed- or random-effects models) and, optionally, graphs
the results.

Syntax

metacum

�
theta j exp(theta)

	 �
se theta j var theta j ll ul

�
cl
�	 �

if exp
� �

in range
��

, var ci effect(fjr) eform level(#) id(strvar) graph

cline fmult(#) csize(#) ltrunc(#) rtrunc(#) graph options
�

In common with the commands meta (Sharp and Sterne 1998) and metabias (Steichen 1988), the user provides the effect
estimate as theta (i.e., a log risk ratio, log odds ratio, or other measure of effect). Likewise, the user supplies a measure of
theta’s variability (i.e., its standard error, se theta, or its variance, var theta). Alternatively, the user provides exp(theta) (e.g. a
risk ratio or odds ratio) and its confidence interval, (ll, ul).

Required input variables

These are the same as for the new version of meta described in sbe16.1 in this issue.

Options for displaying results

var means the user has specified a variable containing the variance of the effect estimate. If this option is not included, the
command assumes the standard error has been specified.

ci means the user has specified the lower and upper confidence limits of the effect estimate, which is assumed to be on the
ratio scale (e.g. odds ratio or risk ratio).

effect(f jr) must be included. This specifies whether fixed (f ) or random (r) effects estimates are to be used in the output and
graph.

eform requests that the output be exponentiated. This is useful for effect measures such as log odds ratios which are derived
from generalized linear models. If the eform and graph options are used, then the graph output is exponentiated, with a
log scale for the x-axis.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

id(strvar) is a character variable which is used to label the studies. If the data contains a labeled numeric variable, then the
decode command can be used to create a character variable.

Options for graphing results

graph requests a graph.

cline asks that a vertical dotted line be drawn through the combined estimate.

fmult(#) is a number greater than zero which can be used to scale the font size for the study labels. The font size is automatically
reduced if the maximum label length is greater than 8, or the number of studies is greater than 20. However it may be
possible to increase it somewhat over the default size.

csize(#) gives the size of the circles used in the graph (default 180).

ltrunc(#) truncates the left side of the graph at the number #. This is used to truncate very wide confidence intervals. However
# must be less than each of the individual study estimates.

rtrunc(#) truncates the right side of the graph at #, and must be greater than each of the individual study estimates.

graph options are any options allowed with graph, twoway other than ylabel(), symbol(), xlog, ytick, and gap.
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Background

The command metacum provides an alternative means of presenting the results of a meta-analysis, where instead of the
individual study effects and combined estimate, the cumulative evidence up to and including each trial can be printed and/or
graphed. The technique was suggested by Lau et al. (1992).

Example

The first trial of streptokinase treatment following myocardial infarction was reported in 1959. A further 21 trials were
conducted between that time and 1986, when the ISIS-2 multicenter trial (on over 17,000 patients in whom over 1800 deaths
were reported) demonstrated conclusively that the treatment reduced the chances of subsequent death.

Lau et al. (1992) pointed out that a meta-analysis of trials performed up to 1977 provided strong evidence that the treatment
worked. Despite this, it was another 15 years until the treatment became routinely used.

Dataset strepto.dta contains the results of 22 trials of streptokinase conducted between 1959 and 1986.

. use strepto, clear

(Streptokinase after MI)

. describe

Contains data from strepto.dta

obs: 22 Streptokinase after MI

vars: 7

size: 638

-------------------------------------------------------------------------------

1. trial byte %8.0g Trial number

2. trialnam str14 %14s Trial name

3. year int %8.0g Year of publication

4. pop1 int %12.0g Treated population

5. deaths1 int %12.0g Treated deaths

6. pop0 int %12.0g Control population

7. deaths0 int %12.0g Control deaths

-------------------------------------------------------------------------------

Sorted by: trial

. list trialnam year pop1 deaths1 pop0 deaths0, noobs

trialnam year pop1 deaths1 pop0 deaths0

Fletcher 1959 12 1 11 4

Dewar 1963 21 4 21 7

1st European 1969 83 20 84 15

Heikinheimo 1971 219 22 207 17

Italian 1971 164 19 157 18

2nd European 1971 373 69 357 94

2nd Frankfurt 1973 102 13 104 29

1st Australian 1973 264 26 253 32

NHLBI SMIT 1974 53 7 54 3

Valere 1975 49 11 42 9

Frank 1975 55 6 53 6

UK Collab 1976 302 48 293 52

Klein 1976 14 4 9 1

Austrian 1977 352 37 376 65

Lasierra 1977 13 1 11 3

N German 1977 249 63 234 51

Witchitz 1977 32 5 26 5

2nd Australian 1977 112 25 118 31

3rd European 1977 156 25 159 50

ISAM 1986 859 54 882 63

GISSI-1 1986 5860 628 5852 758

ISIS-2 1988 8592 791 8595 1029

Before doing our meta-analysis, we calculate the log odds ratio for each study, and its corresponding variance. We also
create a string variable containing the trial name and year of publication:

. gen logor=log((deaths1/(pop1-deaths1))/((deaths0/(pop0-deaths0))))

. gen varlogor=(1/deaths1)+(1/(pop1-deaths1))+(1/deaths0)+(1/(pop0-deaths0))

. gen str4 yc=string(year)

. gen str21 trnamy=trialnam+" ("+yc+")"

. meta logor varlogor, var eform graph(f) id(trnamy) xlab(.1,.5,1,2,10) ltr(0.1)

> rtr(10) cline xline(1) print b2("Odds ratio") fmult(1.5)
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Meta-analysis (exponential form)

| Pooled 95% CI Asymptotic No. of

Method | Est Lower Upper z_value p_value studies

-------+----------------------------------------------------

Fixed | 0.774 0.725 0.826 -7.711 0.000 22

Random | 0.782 0.693 0.884 -3.942 0.000

Test for heterogeneity: Q= 31.498 on 21 degrees of freedom (p= 0.066)

Moment-based estimate of between studies variance = 0.017

| Weights Study 95% CI

Study | Fixed Random Est Lower Upper

----------------------+----------------------------------------

Fletcher (1959) | 0.67 0.67 0.16 0.01 1.73

Dewar (1963) | 1.91 1.85 0.47 0.11 1.94

1st European (1969) | 6.80 6.10 1.46 0.69 3.10

Heikinheimo (1971) | 8.72 7.61 1.25 0.64 2.42

Italian (1971) | 8.18 7.19 1.01 0.51 2.01

2nd European (1971) | 31.03 20.39 0.64 0.45 0.90

2nd Frankfurt (1973) | 7.35 6.54 0.38 0.18 0.78

1st Australian (1973) | 12.75 10.50 0.75 0.44 1.31

NHLBI SMIT (1974) | 1.93 1.87 2.59 0.63 10.60

Valere (1975) | 3.87 3.63 1.06 0.39 2.88

Frank (1975) | 2.67 2.55 0.96 0.29 3.19

UK Collab (1976) | 20.77 15.39 0.88 0.57 1.35

Klein (1976) | 0.68 0.67 3.20 0.30 34.59

Austrian (1977) | 20.49 15.24 0.56 0.36 0.87

Lasierra (1977) | 0.65 0.64 0.22 0.02 2.53

N German (1977) | 21.59 15.84 1.22 0.80 1.85

Witchitz (1977) | 2.06 1.99 0.78 0.20 3.04

2nd Australian (1977) | 10.50 8.92 0.81 0.44 1.48

3rd European (1977) | 13.02 10.68 0.42 0.24 0.72

ISAM (1986) | 27.13 18.63 0.87 0.60 1.27

GISSI-1 (1986) | 303.12 49.69 0.81 0.72 0.90

ISIS-2 (1988) | 400.58 51.76 0.75 0.68 0.82
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Figure 1: Streptokinase meta-analysis

It can be seen from the fixed-effects weights, and the graphical display, that the results are dominated by the two large
trials reported in 1986. We now do a cumulative meta-analysis:

. metacum logor varlogor, var effect(f) graph eform id(trnamy) xlab(.1,.5,1,2)

> ltr(0.1) cline xline(1) b2("Odds ratio") fmult(1.5)

Cumulative fixed-effects meta-analysis of 22 studies (exponential form)

-----------------------------------------------------------------------

Cumulative 95% CI

Trial estimate Lower Upper z P value

Fletcher (1959) 0.159 0.015 1.732 -1.509 0.131

Dewar (1963) 0.355 0.105 1.200 -1.667 0.096

1st European (1969) 0.989 0.522 1.875 -0.034 0.973

Heikinheimo (1971) 1.106 0.698 1.753 0.430 0.667

Italian (1971) 1.076 0.734 1.577 0.376 0.707

2nd European (1971) 0.809 0.624 1.048 -1.607 0.108

2nd Frankfurt (1973) 0.742 0.581 0.946 -2.403 0.016

1st Australian (1973) 0.744 0.595 0.929 -2.604 0.009

NHLBI SMIT (1974) 0.767 0.615 0.955 -2.366 0.018



16 Stata Technical Bulletin STB-42

Valere (1975) 0.778 0.628 0.965 -2.285 0.022

Frank (1975) 0.783 0.634 0.968 -2.262 0.024

UK Collab (1976) 0.801 0.662 0.968 -2.296 0.022

Klein (1976) 0.808 0.668 0.976 -2.213 0.027

Austrian (1977) 0.762 0.641 0.906 -3.072 0.002

Lasierra (1977) 0.757 0.637 0.900 -3.150 0.002

N German (1977) 0.811 0.691 0.951 -2.571 0.010

Witchitz (1977) 0.810 0.691 0.950 -2.596 0.009

2nd Australian (1977) 0.810 0.695 0.945 -2.688 0.007

3rd European (1977) 0.771 0.665 0.894 -3.448 0.001

ISAM (1986) 0.784 0.683 0.899 -3.470 0.001

GISSI-1 (1986) 0.797 0.731 0.870 -5.092 0.000

ISIS-2 (1988) 0.774 0.725 0.826 -7.711 0.000
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Figure 2: Streptokinase cumulative meta-analysis

By the end of 1977 there was clear evidence that streptokinase treatment prevented death following myocardial infarction.
The point estimate of the pooled treatment effect was virtually identical in 1977 (odds ratio=0.771) and after the results of the
large trials in 1986 (odds ratio=0.774).

Note

The command meta (Sharp and Sterne 1998) should be installed before running metacum.
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sbe23 Meta-analysis regression

Stephen Sharp, London School of Hygiene and Tropical Medicine, stephen.sharp@lshtm.ac.uk

The command metareg extends a random effects meta-analysis to estimate the extent to which one or more covariates,
with values defined for each study in the analysis, explain heterogeneity in the treatment effects. Such analysis is sometimes
termed “meta-regression” (Lau et al. 1998). Examples of such study-level covariates might be average duration of follow-up,
some measure of study quality, or, as described in this article, a measure of the geographical location of each study. metareg
fits models with two additive components of variance, one representing the variance within units, the other the variance between
units, and therefore is applicable both to the meta-analysis situation, where each unit is one study, and to other situations such
as multi-center trials, where each unit is one center. Here metareg is explained in the meta-analysis context.
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Background

Suppose yi represents the treatment effect measured in study i (k independent studies, i = 1; : : : ; k), such as a log odds
ratio or a difference in means, vi is the (within-study) variance of yi, and xi1; : : : ; xip are measured study-level covariates. A
weighted normal errors regression model is

Y � N(X�; V )

where Y = (y1; : : : ; yk)
T is the k � 1 vector of treatment effects, with ith element yi, X is a k � (p+ 1) design matrix with

ith row (1; xi1; : : : ; xip), � = (�0; : : : ; �p)
T is a (p+ 1)� 1 vector of parameters, and V is a k� k diagonal variance matrix,

with ith diagonal element vi.

The parameters of this model can be estimated in Stata using regress with analytic weights wi = 1=vi. However, vi
represents the variance of the treatment effect within study i, so this model does not take into account any possible residual
heterogeneity in the treatment effects between studies. One approach to incorporating residual heterogeneity is to include an
additive between-study variance component �2, so the ith diagonal element of the variance matrix V becomes vi + �2.

The parameters of the model can then be estimated using a weighted regression with weights equal to 1=vi + �2, but �2

must be explicitly estimated in order to carry out the regression. metareg allows four alternative methods for estimation of �2,
three of them are iterative, while one is noniterative and an extension of the moment estimator proposed for random effects
meta-analysis without covariates (DerSimonian and Laird 1986).

Method-of-moments estimator

Maximum-likelihood estimates of the � parameters are first obtained by weighted regression assuming b�2 = 0, and then a
moment estimator of �2 is calculated using the residual sum of squares from the model,

RSS =

kX
i=1

wi(yi � byi)2
as follows:

b�2mm =
RSS � (k � (p+ 1))Pk

i=1 wi � tr(V �1X(X
0

V �1X)�1X
0

V �1)

where b�2mm = 0 if RSS < k � (p+ 1) (DuMouchel and Harris 1983).

A weighted regression is then carried out with new weights w�
i = 1=b�2 + vi to provide a new estimate of �. The formula

for b�2mm in the case of no covariate reduces to the standard moment estimator (DerSimonian and Laird 1986).

Iterative procedures

Three other methods for estimating �2 have been proposed, and require an iterative procedure.

Starting with b�2 = 0, a regression using weights w�
i = 1=vi gives initial estimates of �. The fitted values byi from this

model can then be used in one of three formulas for estimation of �2, given below:

b�2ml =

Pk
i=1 w

�2
i [(yi � byi)2 � vi]Pk

i=1 w
�2
i

maximum likelihood (Pocock et al. 1981)

b�2reml =

Pk
i=1 w

�2
i

�
k

k � (p+ 1)
(yi � byi)2 � vi

�
Pk

i=1 w
�2
i

restricted maximum likelihood (Berkey et al. 1995)

b�2eb =
Pk

i=1 w
�
i

�
k

k � (p+ 1)
(yi � byi)2 � vi

�
Pk

i=1 w
�
i

empirical Bayes (Berkey et al. 1995)

In each case, if the estimated value b�2 is negative, it is set to zero.

Using the estimate b�2, new weights w�
i = 1=b�2 + vi (or 1=vi if b� is zero) are then calculated, and hence new estimates of

�, fitted values byi, and thence b�2. The procedure continues until the difference between successive estimates of �2 is less than
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a prespecified number (such as 10�4). The standard errors of the final estimates of � are calculated forcing the scale parameter
to be 1, since the weights are equal to the reciprocal variances.

Syntax

metareg has the usual syntax for a regression command, with the additional requirement that the user specify a variable
containing either the within-study standard error or variance.

metareg y varlist
�
if exp

� �
in range

�
,

�
wsse(varname) j wsvar(varname) j wsse(varname) wsvar(varname

	�
bsest(

�
reml j ml j eb j mm	) toleran(#) level(#) noiter

�
The command supplies estimated parameters, standard errors, Z statistics, p values and confidence intervals, in the usual

regression output format. The estimated value of �2 is also given.

Options

wsse(varname) is a variable in the dataset which contains the within-studies standard error
p
vi. Either this or the wsvar option

below (or both) must be specified.

wsvar(varname) is a variable in the dataset which contains the within-studies variance vi. Either this or the wsse option above
(or both) must be specified.

Note: if both the above options are specified, the program will check that the variance is the square of the standard error for
each study.

bsest(

�
reml j ml j eb j mm	) specifies the method for estimating �2. The default is reml (restricted maximum likelihood),

with the alternatives being ml (maximum likelihood), eb (empirical Bayes), and mm (method of moments).

toleran(#) specifies the difference between values of b�2 at successive iterations required for convergence. If # is n, the process
will not converge until successive values of b�2 differ by less than 10�n. The default is 4.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

noiter requests that the log of the iterations in the reml, ml, or eb procedures be suppressed from the output.

Example

BCG is a vaccine widely used to give protection against tuberculosis. Colditz et al. (1994) performed a meta-analysis of all
published trials which randomized subjects to either BCG vaccine or placebo, and then had similar surveillance procedures to
monitor the outcome, diagnosis of tuberculosis.

The data in bcg.dta are as reported by Berkey et al. (1995). Having read the file into Stata, the log odds ratio of tuberculosis
comparing BCG with placebo, and its standard error can be calculated for each study.

. use bcg, clear

(BCG and tuberculosis)

. describe

Contains data from bcg.dta

obs: 13 BCG and tuberculosis

vars: 8

size: 351

-------------------------------------------------------------------------------

1. trial str2 %9s trial identity number

2. lat byte %9.0g absolute latitude from Equator

3. nt float %9.0g total vaccinated patients

4. nc float %9.0g total unvaccinated patients

5. rt int %9.0g tuberculosis in vaccinated

6. rc int %9.0g tuberculosis in unvaccinated

-------------------------------------------------------------------------------

Sorted by:

. list, noobs

trial lat nt nc rt rc

1 44 123 139 4 11

2 55 306 303 6 29

3 42 231 220 3 11

4 52 13598 12867 62 248

5 13 5069 5808 33 47
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6 44 1541 1451 180 372

7 19 2545 629 8 10

8 13 88391 88391 505 499

9 27 7499 7277 29 45

10 42 1716 1665 17 65

11 18 50634 27338 186 141

12 33 2498 2341 5 3

13 33 16913 17854 27 29

. gen logor=log((rt/(nt-rt))/(rc/(nc-rc)))

. gen selogor=sqrt((1/rc)+(1/(nc-rc))+(1/rt)+(1/(nt-rt)))

Note: if either rt or rc were 0, a standard approach would be to add 0.5 to each of rt, rc, nt-rt, and nc-rc for that
study (Cox and Snell 1989).

A meta-analysis of the data can now be performed using the meta command described by Sharpe and Sterne (1997 and
updated in sbe16.1).

. meta logor selogor, eform graph(r) id(trial) cline xlab(0.5,1,1.5) xline(1)

> boxsh(4) b2("Odds ratio - log scale")

Meta-analysis (exponential form)

| Pooled 95% CI Asymptotic No. of

Method | Est Lower Upper z_value p_value studies

-------+----------------------------------------------------

Fixed | 0.647 0.595 0.702 -10.319 0.000 13

Random | 0.474 0.325 0.690 -3.887 0.000

Test for heterogeneity: Q= 163.165 on 12 degrees of freedom (p= 0.000)

Moment estimate of between-studies variance = 0.366

Odds ratio - log scale
.5 1 1.5

Combined

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

Figure 1: A meta-analysis of the BCG and Tuberculosis data

Both the graph and the statistical test indicate substantial heterogeneity between the trials, with an estimated between-studies
variance of 0.366. The random effects combined estimate of 0.474, indicating a strong protective effect of BCG against tuberculosis,
should not be reported without some discussion of the possible reasons for the differences between the studies (Thompson 1994).

One possible explanation for the differences in treatment effects could be that the studies were conducted at different
latitudes from the equator. Berkey et al. (1995) speculated that absolute latitude, or distance of each study from the equator, may
serve as a surrogate for the presence of environmental mycobacteria which provide a certain level of natural immunity against
tuberculosis. By sorting on absolute latitude, the graph obtained using meta shows the studies in order of increasing latitude
going down the page.

. sort lat

. meta logor selogor, eform graph(r) id(trial) cline xlab(0.5,1,1.5) xline(1)

> boxsh(4) b2("Odds ratio - log scale")

(output omitted )
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Odds ratio - log scale
.5 1 1.5

Combined
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Figure 2: Same as Figure 1 but sorted by latitude

The graph now suggests that BCG vaccination is more effective at higher absolute latitudes. This can be investigated further
using the metareg command, with a REML estimate of the between-studies variance �2.

. metareg logor lat, wsse(selogor) bs(reml) noiter

Meta-analysis regression No of studies = 13

tau^2 method reml

tau^2 estimate = .0235

Successive values of tau^2 differ by less than 10^-4 - convergence achieved

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lat | -.0320363 .0049432 -6.481 0.000 -.0417247 -.0223479

_cons | .3282194 .1659807 1.977 0.048 .0029033 .6535356

------------------------------------------------------------------------------

This analysis shows that after allowing for additive residual heterogeneity, there is a significant negative association between
the log odds ratio and absolute latitude, i.e., the higher the absolute latitude, the lower the odds ratio, and hence the greater the
benefit of BCG vaccination. The following plot of log odds ratio against absolute latitude includes the fitted regression line from
the model above. The size of the circles in the plot is inversely proportional to the variance of the log odds ratio, so larger
circles correspond to larger studies.

. gen invvlor=selogor^-2

. gen fit=0.328-0.032*lat

. gr logor fit lat [fw=invvlor], s(oi) c(.l) xlab(0,10,20,30,40,50,60)

> ylab(-1.6094,-0.6931,0,0.6931) l1("Odds ratio (log scale)")

> b2("Distance from Equator (degrees of latitude)")
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Figure 3

(Note: the axes on this graph have been modified using the STAGE software)

Here a restricted maximum-likelihood method was used to estimate �2; the other three methods are used in turn below:

. metareg logor lat, wsse(selogor) bs(ml) noiter
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Meta-analysis regression No of studies = 13

tau^2 method ml

tau^2 estimate = .0037

Successive values of tau^2 differ by less than 10^-4 - convergence achieved

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lat | -.0327447 .0033327 -9.825 0.000 -.0392767 -.0262128

_cons | .3725098 .1043895 3.568 0.000 .1679102 .5771093

------------------------------------------------------------------------------

. metareg logor lat, wsse(selogor) bs(eb) noiter

Meta-analysis regression No of studies = 13

tau^2 method eb

tau^2 estimate = .1373

Successive values of tau^2 differ by less than 10^-4 - convergence achieved

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lat | -.0305794 .0090005 -3.398 0.001 -.0482201 -.0129388

_cons | .2548214 .3138935 0.812 0.417 -.3603984 .8700413

------------------------------------------------------------------------------

. metareg logor lat, bs(mm) wsse(selogor) noiter

Warning: mm is a non-iterative method, noiter option ignored

Meta-analysis regression No of studies = 13

tau^2 method mm

tau^2 estimate = .0480

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

lat | -.0315724 .0061726 -5.115 0.000 -.0436704 -.0194744

_cons | .303035 .2108751 1.437 0.151 -.1102727 .7163427

------------------------------------------------------------------------------

The estimated value of �2 using a method-of-moments estimator is 0.048, compared with 0.366 before adjusting for latitude,
so absolute latitude has explained almost all of the variation between the studies.

The analyses above show that the estimate of the effect of latitude is similar using all four methods. However, the
estimated values of �2 differ considerably, with the estimate from the empirical Bayes method being largest. The restricted
maximum-likelihood method corrects the bias in the maximum-likelihood estimate of �2. The basis for using the empirical Bayes
method is less clear (Morris 1983), so this method should be used with caution. The moment-based method extends the usual
random-effects meta-analysis; below metareg is used to fit a model with no covariate:

. metareg logor, bs(mm) wsse(selogor)

Meta-analysis regression No of studies = 13

tau^2 method mm

tau^2 estimate = .3663

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

_cons | -.7473923 .1922628 -3.887 0.000 -1.124221 -.3705641

------------------------------------------------------------------------------

Now the estimate of �2 is identical to that obtained earlier from meta, and the constant parameter is the log of the random
effects pooled estimate given by meta.

The paper by Thompson and Sharp (1998) contains a fuller discussion both of the differences between the four methods
of estimation, and other methods for explaining heterogeneity. Copies are available on request from the author.

Saved results

metareg saves the following results in the S macros:

S 1 k, number of studies
S 2 �̂2, estimate of between-studies variance
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sg42.2 Displaying predicted probabilities from probit or logit regression

Mead Over, World Bank, FAX: 202-522-3230

Syntax

probpred yvar xvar
�
if exp

�
, from(#) to(#)

�
inc(#)

adjust(covlist) one(varlist) zero(varlist) logit

level(#) poly(#) nomodel nolist noplot graph options
�

Description

probpred is an extension of the logpred program of Garrett (1995). It first estimates a probit or logit regression of a
dichotomous (or binary) dependent variable on a set of independent variables. The purpose of probpred is to compute and graph
the estimated relationship between the predicted probability from this regression and one of the independent variables, holding
the others constant. By default, both probpred and logpred display the regression estimates and a graph and listing of the
requested predictions and the forecast interval. probpred contains four additional options not included in the original logpred
program: logit, one, zero, and level. The default is to estimate a probit regression using the Stata command dprobit, but
the logit option instead estimates a logit model using the logistic command. The one and zero options allow the user to
specify that some of the covariates listed in option adjust are to be set equal to one or zero instead of to their means. The
level option allows forecast intervals to be set to confidence levels determined by the user rather than only to 95% confidence
levels.

Options

from(#) specifies the lowest value of xvar for which a prediction is to be calculated. This option is required.

to(#) specifies the highest value of xvar for which a prediction is to be calculated. This option is required.

inc(#) specifies the increment between adjacent values of xvar. The default increment is 1.

adjust(covlist) specifies the other covariates in the model all of which are set to their sample means in computing the predicted
values unless the one or zero options are specified as described below.

one(varlist) specifies a subset of covlist to be set to one instead of to their mean values in the data.

zero(varlist) specifies a subset of covlist to be set to zero instead of to their mean values in the data.

logit specifies that a logit model will be used. The default is probit.
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level(#) specifies the confidence level to be used in computing and displaying the forecast interval.

poly(#) indicates that xvar enters the model as a polynomial. Quadratic and cubic models are allowed. They are indicated by
poly(2) and poly(3), respectively. The polynomial terms are created and entered in the regression automatically.

nomodel suppresses the display of the estimated regression.

nolist suppresses the list of predicted values.

noplot suppresses the graph of predicted values.

graph options allowed include xlabel, ylabel, saving(filename), and titles.

Example

Using the coronary heart disease data that Garrett used (Garrett 1995), we have that

. probpred chd age, from(20) to(80) inc(5) adj(smk chl)

calculates the predicted probability of coronary heart disease (chd) for five-year increments of age from 20 years to 80 years
adjusted for smoking status (smk) and serum cholesterol (chl), and results in the following output:

Iteration 0: Log Likelihood = -438.5583

Iteration 1: Log Likelihood =-413.31477

Iteration 2: Log Likelihood =-412.92502

Iteration 3: Log Likelihood =-412.92466

Probit Estimates Number of obs = 1218

chi2(3) = 51.27

Prob > chi2 = 0.0000

Log Likelihood = -412.92466 Pseudo R2 = 0.0584

------------------------------------------------------------------------------

chd | dF/dx Std. Err. z P>|z| x-bar [ 95% C.I. ]

---------+--------------------------------------------------------------------

age | .0049078 .0009072 5.32 0.000 53.7061 .00313 .006686

smk*| .0768262 .0167212 4.19 0.000 .635468 .044053 .109599

chl | .000716 .0002149 3.30 0.001 211.739 .000295 .001137

---------+--------------------------------------------------------------------

obs. P | .1165846

pred. P | .1033125 (at x-bar)

------------------------------------------------------------------------------

(*) dF/dx is for discrete change of dummy variable from 0 to 1

z and P>|z| are the test of the underlying coefficient being 0

Probabilities and 95% Confidence Intervals

Outcome Variable: Coronary heart disease -- chd

Independent Variable: Age in years -- age

Covariates: smk chl

Variables set to Zero:

Variables set to One:

Total Observations: 1218

age pred lower upper

1. 20 .0145038 .0052657 .0352342

2. 25 .020337 .0088225 .0426535

3. 30 .0280478 .0143056 .0513626

4. 35 .0380526 .0224407 .0615699

5. 40 .0507943 .0340208 .0735753

6. 45 .0667224 .0497244 .0879035

7. 50 .0862665 .0696591 .1056709

8. 55 .1098053 .0925022 .129317

9. 60 .1376323 .1156769 .1622731

10. 65 .1699221 .1382471 .2059036

11. 70 .2066993 .1610617 .2592201

12. 75 .2478149 .1848735 .3206733

13. 80 .292933 .2100355 .3884447

The graphical output of the command is given in Figure 1.
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Predicted Values for Coronary heart disease -- chd
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Figure 1. Probability of coronary heart disease as function of age
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sg76 An approximate likelihood-ratio test for ordinal response models

Rory Wolfe, Royal Children’s Hospital, Australia, wolfer@cryptic.rch.unimelb.edu.au
William Gould, Stata Corporation, wgould@stata.com

Introduction

An ordinal response is made on a J -category ordered scale. A popular model for i = 1; : : : ; n ordinal responses yi is

link(ij) = �j � xi�; j = 1; : : : ; J � 1

where ij = Pr(yi � jjxi) is the cumulative probability for category j which has associated with it a “cut-point” parameter
�j related to the cumulative probability of yi when xi = 0. The vector xi contains values of explanatory variables and the
effects of these variables are quantified by � (a parameter vector of length s). Stata 5.0 has the facility to fit three such models;
a model with a logit link can be fitted using the ologit command, a probit link model can be fitted using oprobit, and
the complementary-log-log link model can also be fitted because of its equivalence to a continuation-ratio model (Läärä and
Matthews 1985) which in turn can be fitted (after appropriate modifications to the data) by specifying a complementary-log-log
link for binary data using the glm command.

The model given above defines effects of explanatory variables on cumulative response probabilities that are constant across
all categories of the ordinal response. In the case of a logit link this constancy of effect across categories is usually called the
proportional-odds assumption, for the complementary-log-log link it is called the proportional-hazards assumption.

Suppose, for example, that yi is a measure of smoking frequency with categories “None”, “Occasional”, and “Frequent”,
and the model only contains the explanatory variable “Sex”, coded as females = 0 and males = 1. Then the difference in effect
size between males and females is

link(0j)� link(1j) = �sex; j = 1; 2

i.e. a constant effect across the three categories. In terms of underlying prevalence rates, this model specifies that the difference
between males and females is that category probabilities are shifted up (if �sex is positive) the response scale for males, relative
to females.

In this example we might suspect that the prevalence of “Frequent” smoking is greater for males than females but that the
combined prevalence of “Occasional” and “Frequent” smoking is greater for females than males. This implies a sex effect that is
not constant across the categories of the response. A generalization of the first model that allows for such a nonconstant effect is

link(ij) = �j � xi�j ; j = 1; : : : ; J � 1



Stata Technical Bulletin 25

where now the effect parameters �j are allowed to vary over the categories.

The purpose of the command omodel is to fit the first model and to test whether the fit to the data provided by the built-in
assumption of effect constancy across categories can be improved upon by fitting the one above (in which the effects of all
explanatory variables are different at each category).

Method

The fitting of the first model is described in the Stata manuals under ologit or oprobit as appropriate. The subsequent
test performed by omodel is an approximate likelihood-ratio test. Likelihood-ratio tests are described in general by McCullagh
and Nelder (1989, Appendix A).

For comparing the first and second models, the likelihood-ratio test is defined as

�2
h
lm(y; b�mle

(1) )� lm(y; b�mle
(2) )

i
� �2

s(J�2)

where lm(:) represents the multinomial log-likelihood function (which implicitly takes the specified link function into account)
and b�mle

(k) denotes the maximum-likelihood estimate of the parameters in model (k) (here we consider the �j parameters and the
vector � to be included in �(k)). The problem with using this test is that the second model cannot be fitted in Stata by maximum
likelihood. Hence we employ an approximation to the above test using

�2
h
lm(y; b�ib(1))� lm(y; b�ib(2))i � �2

s(J�2)

where b�ib
(k)

denote estimates that are obtained from an alternative estimation method which will be referred to as “independent
binaries”.

In brief, independent binaries estimation of a model for an ordinal response employs the J � 1 binary responses defined as

y
y

ij =

n
1 if yi � j

0 otherwise

for j = 1; : : : ; J � 1 where E(yyij jxi) = ij . The correlation between these binary responses is given by

corr(y
y

ij ; y
y

ik) =

s
ij(1� ik)

ik(1� ij)
; j < k

but in estimation this fact is ignored. Hence for estimation purposes, the model is specified in terms of independent binary
responses yyij and a command for fitting binary responses (e.g. logit or probit) can be used to obtain the estimates.

As with maximum likelihood, the independent binaries method of estimation provides consistent estimates of the model
parameters, but the estimation is inefficient compared to maximum likelihood. The approximation lm(y; b�ib(k)) will always be

smaller than the true likelihood lm(y; b�mle
(k) ) since this quantity is by definition the maximum value of lm(y;�(k)). In our

experience the approximation is remarkably good, and it certainly should be for large n or any likelihood that is fairly flat around
the maximum. Also note that in performing the approximate test, we subtract two quantities that are both underestimates so any
error in the approximation will be reduced rather than magnified at this stage.

The null hypothesis of our test is that the (J � 1) �j parameter vectors in the second model are all equal to � as in the
first model. The test statistic is the second �2 statistic above and a significant p value is evidence to reject this null hypothesis
and accept that the effects of the explanatory variables are not constant across the categories of the ordinal response.

Syntax

omodel logit varlist
�
weight

� �
if exp

� �
in range

�
omodel probit varlist

�
weight

� �
if exp

� �
in range

�
fweights are allowed and provide a very useful way of dealing with data that are stored in a contingency table format; see the
second example below.



26 Stata Technical Bulletin STB-42

Example of ordinal by ordinal 2-way tables

The data presented by Agresti (1984, 12) on an undesirable side-effect outcome from different operations for treating
duodenal ulcer patients are reproduced in Table 1.

Table 1: Cross-classification of dumping severity and operation

Dumping severity

Operation None Slight Moderate Total

Drainage and vagotomy 61 28 7 96
25% resection and vagotomy 68 23 13 104
50% resection and vagotomy 58 40 12 110

75% resection 53 38 16 107

Total 240 129 48 417

Suppose we have these data in Stata as a record for each patient with variables “operate” (numbered 1–4) and “outcome”
(response category numbered 1–3). An ordered logit model is fitted to the data using the command

xi: omodel logit outcome i.operate

and the output from the test of the proportional-odds assumption is

chi2(3) = 3.72

Prob > chi2 = 0.2932

If we had data on the patients age and sex we could fit a more elaborate model

xi: omodel logit outcome i.operate*age i.sex

and of course we could fit an ordered probit model by simply replacing logit with probit in the above commands.

Cheese tasting experiment

Suppose that the following data (from McCullagh and Nelder 1989, 175) are to be analyzed with a cumulative logit model
to detect for differences in preference of four cheese additives.

Table 2: Multiple-response cheese-tasting experiment

Response category

Cheese I� II III IV V VI VII VIII IXy Total
A 0 0 1 7 8 8 19 8 1 52
B 6 9 12 11 7 6 1 0 0 52
C 1 1 6 8 23 7 5 1 0 52
D 0 0 0 1 3 7 14 16 11 52

Total 7 10 19 27 41 28 39 25 12 208
�I=strong dislike; yIX=excellent taste

These data can be entered into Stata most simply as the contingency table of counts that is presented here, i.e., three variables:
“response category” (with values 1–9, labeled I–IX), “additive” (values 1–4, labeled A–D) and “count” (which contains the cell
counts of the table). When data are stored in this form, omodel can be used as follows

xi: omodel logit response i.additive [fweight=count]

with the result from the approximate likelihood-ratio test statistic in this case being 44.64 on 16 degrees of freedom. Note that
the degrees of freedom are less than s(J � 2) = 21 because of the zeroes in the table.

The p value for the test is 0.0002 so the null hypothesis is rejected and we conclude that the preferences between the
cheeses cannot be described by effects that are constant across all categories.

Technical notes

In this second example, the first attempt to use omodel resulted in the error “matsize too small”, which is remedied by,
e.g. set matsize 150. When omodel performs the approximate test it is necessary to expand the data to (J � 1) times n and
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fit two logistic models to the expanded data. If J and n are large, this can take an appreciable amount of time. Also, if as in
this example, J is large, then the matsize problem is likely to be encountered.

In the second example, the log-likelihood for the model is �355.67 and the approximation to this from independent binaries
estimation is �355.98.

Saved results

S 1 Log-likelihood ratio
S 2 Test degrees of freedom

Discussion

The new command omodel provides an approximate likelihood-ratio test for the cumulative logit and probit models. Note
that in the case of the complementary-log-log model an exact test can be calculated by fitting the two models with judicious use
of glm.

It is to be emphasized that the likelihood-ratio test does not provide a test of whether the first model fits the data adequately.
This goodness-of-fit-type interpretation is not the correct conclusion to be reached from a nonsignificant p value. A significant
p value provides strong evidence that a more general model is required. A nonsignificant p value shows a lack of evidence that
the general model provides an improvement in fit to the data.

The likelihood-ratio tests the first model against a completely general alternative, the second model. For J > 3 there is an
intermediate, nested model in which the effect of all explanatory variables is described by two parameters (as opposed to one
parameter in the first and J � 1 parameters in the second). This model is defined as

link(ij) = �j exp(xi�)� xi�; j = 1; : : : ; J � 1

where as before, the parameters � describe shifts of the underlying category probabilities up the response scale, and now the
parameters � describe concentration of underlying category probabilities towards the middle of the response scale. The above
model cannot at present be estimated in Stata but is worthy of consideration since it describes a phenomenon that often occurs
with ordinal response scales.

If a significant p value is obtained from the likelihood-ratio test, it is possible that the above model is sufficient to describe
all of the non-constancy of effects across categories. A further likelihood-ratio test comparing the second model and the one
above would determine whether this was the case. For the data in Example 2, McCullagh and Nelder (1989, 177) examine the
deviance reduction due to the above model and report it to be 3.3 on 3 degrees of freedom indicating that the non-proportionality
of odds cannot be described in the simple fashion defined by the model above.

In the case of a nonsignificant p value from the likelihood-ratio test, the deviance value can be compared to a �2 distribution
on s degrees of freedom. This informal comparison tests whether the above model could provide an improved fit to the data
(over the first model) if it accounted for the entire reduction in deviance between the first and second models.

An alternative to the likelihood-ratio test is to test a score-statistic (see McCullagh & Nelder 1989, Appendix A) with a null
hypothesis that the general model parameter structure of the second model is equal to the structure defined by the first model.
Such a score statistic test is provided by PROC LOGISTIC in SAS (SAS Institute 1989). For the dumping severity example the score
statistic is 4.021 on 3 degrees of freedom (p = 0.2592), a similar result to the approximate likelihood-ratio test.

For the cheese tasting example, the test statistic from SAS is 17.29 on 21 degrees of freedom. In contrast to the likelihood-ratio
test this is nonsignificant, hence the conclusion from the score test is that there is no evidence to reject the null hypothesis of
proportional odds in favor of the general model. Note that the degrees of freedom presented by SAS makes no allowance for the
sparse nature of the data.

Note that in the case of a single parameter the approximate theoretical error associated with a score statistic is of order
n�1=2 whereas for the likelihood-ratio test the approximate theoretical error is of order n�1, hence the latter is theoretically
preferable. The advantage of the score statistic in practice is in terms of computing effort, with only the first model needing to
be fitted in comparison to the likelihood-ratio test which requires the fitting of both the first and second models.
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sg77 Regression analysis with multiplicative heteroscedasticity

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

One of the main assumptions in the standard linear regression model—as estimated in Stata by the commands regress and
fit—is that the residuals are homoscedastic, i.e., all residuals have the same variance �2. What are the consequences when we
use OLS-estimates while the homoscedasticity assumption is violated, i.e., the residuals are heteroscedastic? It is well-known that
the OLS-estimates b� = (X 0X)�1Xy are still unbiased and consistent under standard regularity conditions. However, the standard
OLS-based standard errors estimated as b�2(X 0X)�1 are wrong, and hence most inferences about the regression coefficients
are in jeopardy. It is possible to use a different estimator of the standard errors of the regression coefficient, known as the
Huber/White/robust/sandwich estimator, and available in Stata with the option robust. This estimator of the standard error is
consistent even if the residuals are heteroscedastic. Consequently, tests of hypotheses about regression coefficients that are based
on these robust standard errors are consistent as well.

Robust estimation of standard errors, however, is not a panacea for possible heteroscedasticity. The reason is that under
heteroscedasticity the OLS-estimators are inefficient: there exist alternative “more accurate” estimators, i.e. estimators with a
uniformly smaller variance. This is known as the Gauss–Markov theorem in the theory of the linear model (Eaton 1983, Ch. 4).
Consequently, the “robust” test of hypotheses on parameters is suboptimal.

How can we diagnose whether the homoscedasticity assumption is violated in some regression problem? A variety of
tests have been proposed. Currently, Stata contains a score test (hettest) of homoscedasticity against a parametric model that
specifies how the residual variance depends on a vector of covariates. In a variant of this score test, the residual variance is
specified as a function of the expected value of the dependent variable. Stata’s reference manual is silent on how to proceed if
any of these tests are significant, i.e., if the homoscedasticity hypothesis has to be rejected. Heteroscedasticity of the latter form,
i.e., �2 = f(Ey), can usually be dealt with by a transformation of the dependent variable. The Box–Cox regression model, in
which the transformation is estimated within the Box–Cox family, is quite suitable here. However, heteroscedasticity of the first
type is more awkward. Here, we usually cannot avoid actually modeling the variance of the residual (or the dependent variable)
in terms of covariates, just like we model the expected value of the dependent variable in terms of some covariates.

The command regh estimates a linear regression model with normally distributed residuals with the specific functional
form for heteroscedasticity that is also assumed by hettest,

yi =�i + �iei

�i =Eyi = �0 + �1xi1 + : : :+ �kxik

�2i =Vary(i) = exp(0 + 1zi1 + : : :+ mzim)

where yi is a random variable (the “dependent variable”) with mean �i and variance �2i , and xi and zi are (vectors of) covariates
predicting the mean and log-variance of y respectively. Thus, we have a linear model for the expected value (mean), and a
log-linear model for the variance of a response variable, conditional on a set of covariates that predict the mean and variance.
In addition, the residuals ei are assumed to be standard normal distributed and independent. (See the option cluster below for
cluster-correlated observations, and for estimating a model with nonnormal residuals.) The (vector-) coefficients � and  are to
be estimated.

Syntax diagrams

regh eqmean eqlnvar
�
if exp

� �
in range

� �
, robust cluster(varname)

twostage level(#) from(matname) maximize options
�

reghv depvar
�
varlist

� �
if exp

� �
in range

�
, var(varlist)

�
robust cluster(varname)

twostage level(#) maximize options
�

eqmean is an equation that contains the dependent variable, followed by the x-variables. eqlnvar is an equation that contains
the z-variables. A constant is automatically appended to both eqmean and eqlnvar. (Thus, if eqlnvar is empty, regh fits the same
model as regress.) In the current implementation, the constants cannot be dropped. regh typed without arguments replays
results. regh interfaces to post-estimation commands such as test, predict etc. in the standard way.

reghv simply sets up appropriate equations (named lp mean and lp lnvar), and interfaces to regh. Thus, to replay results
type regh.

Note that the current implementations of regh and reghv do not support weights.
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Options

var(varlist) specifies the variables used to model the log(variance) of the residuals. (Only with reghv).

robust specifies that the robust method of calculating the (co)variance matrix is to be used instead of the traditional calculation
(Harvey 1976). The robust variant of the covariance matrix is also computed for the 2SLS estimator.

cluster(varname) implies robust and specifies a variable on which clustering is to be based. The cluster-variable may be of
type string.

twostage specifies that Harvey’s 2SLS estimator (and the associated consistent (co)variance matrix estimate) should be computed,
otherwise the maximum-likelihood estimator is used. If the residuals are normally distributed, the variance of maximum-
likelihood estimators is approximately half the variance of the 2SLS-estimator.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level.

from(matname) specifies a matrix (row-vector) with initial values. from should be properly named (see online help for ml for
details). from enables efficient bootstrapping where one may use “full sample” estimates as starting values for the resamples.

maximize options control the maximization process; see [R] maximize. You should never have to specify the more technical of
these options, although we do recommend specifying the trace option.

Additional programs

We have a number of additional programs (commands) to test for and model heteroscedasticity in a regression-like context.
Contact the author if you are interested in any of these commands.

htest is a modification of Stata’s hettest that easily provides univariate tests as well.

white is White’s test for homoscedasticity (H0) against general forms of heteroscedasticity (Ha) (see White 1980).

szroeter is Szroeter’s semi-parametric test whether the residual variance is monotone in an exogenous discrete or continuous
variable.

regh2 is similar to regh but uses ml/deriv2 (but Fisher-scoring rather than Newton–Raphson) rather than the hand-coded
alternating scoring algorithm. regh2 is considerably slower, but, may be more stable for very ill-conditioned problems.

reghf computes maximum-likelihood estimators for (location, scale) models with nonnormal residuals (e.g., Cauchy, logistic).
There is some evidence that inference on variance-models in the context of regression models is less robust than inference
on the model of the mean. Using reghf it is possible to verify whether conclusions depend on the assumption of normality.
In case of doubt, use the 2SLS-estimator that is less efficient than the maximum-likelihood estimation under normality, but
consistent for nonnormal residuals as well.

reghv computes maximum-likelihood estimators (for normally distributed residuals) for a variant of the multiplicative hetero-
scedasticity model that assumes

log �2i = ��i + 0zi�

where � is a scalar parameter.

probith estimates probit models with multiplicative heteroscedasticity. Note that the probit model can be interpreted as a
regression model with normally distributed residuals and severe missing values in the dependent variable y: it is only
observed when y � 0. This generalizes immediately to the heteroscedastic probit regression model.

Example

In this stylized example, I discuss an analysis of data on the management of R&D cooperative alliances, modeled after
Blumberg (1997). We wanted to analyze the extent to which firms that engage in an R&D-oriented transaction with a partner,
invest in ex-ante planning such as contracting (contract). From Williamson’s transactions–costs economics and Granovetter-
like sociological arguments about the effects of social embeddedness of the functioning of markets, it is expected that these
investments increase with the risks involved (here indicated by the variables volume (log-volume-in-money) and depend (mutual
dependency)), decrease to the extent that the partners involved have a common past (past) and expect to have a common future
(future), and decrease to the extent that the partners have common ties to other firms (network).

. fit contract volume depend past future network
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Source | SS df MS Number of obs = 94

---------+------------------------------ F( 5, 88) = 49.86

Model | 458.319345 5 91.663869 Prob > F = 0.0000

Residual | 161.770291 88 1.83829876 R-squared = 0.7391

---------+------------------------------ Adj R-squared = 0.7243

Total | 620.089636 93 6.66763049 Root MSE = 1.3558

------------------------------------------------------------------------------

contract | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

volume | .9070136 .1587244 5.714 0.000 .5915822 1.222445

depend | .4112368 .1490966 2.758 0.007 .1149387 .7075349

past | -.224738 .0171927 -13.072 0.000 -.2589049 -.190571

future | -.218904 .1034922 -2.115 0.037 -.4245731 -.013235

network | -.3401932 .1011277 -3.364 0.001 -.5411632 -.1392232

_cons | -1.679443 1.160729 -1.447 0.151 -3.986149 .6272628

------------------------------------------------------------------------------

Let us compare these results with OLS-estimates with “robust” standard errors.

. fit contract volume depend past future network, robust

Regression with robust standard errors Number of obs = 94

F( 5, 88) = 22.95

Prob > F = 0.0000

R-squared = 0.7391

Root MSE = 1.3558

------------------------------------------------------------------------------

| Robust

contract | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

volume | .9070136 .1904846 4.762 0.000 .5284655 1.285562

depend | .4112368 .1038016 3.962 0.000 .2049529 .6175207

past | -.224738 .0259251 -8.669 0.000 -.2762586 -.1732174

future | -.218904 .0827287 -2.646 0.010 -.3833099 -.0544982

network | -.3401932 .0987157 -3.446 0.001 -.53637 -.1440164

_cons | -1.679443 .898974 -1.868 0.065 -3.465965 .1070788

------------------------------------------------------------------------------

The changes in estimates for standard errors are generally conservative. Next we test for homoscedasticity with a Weisberg–
Cook’s score test using htest.

. htest, rhs u

Score tests for heteroscedasticity (Ho: Constant variance)

| var = f(a + b*z) |

Variable | score df p |

---------+--------------------------+

volume | 40.22 1 0.0000 |

depend | 0.09 1 0.7604 |

past | 94.68 1 0.0000 |

future | 2.42 1 0.1201 |

network | 0.27 1 0.6021 |

---------+--------------------------+

combined | 128.14 5 0.0000 |

According to the univariate tests of htest, it appears that the variance of the residuals can be modeled using only volume

and past. White’s omnibus test for heteroscedasticity also indicates that the regression analysis is misspecified, possibly due to
heteroscedasticity.

. white

White's test for Ho: homoscedasticity

against Ha: unrestricted heteroscedasticity

test statistic W = 34.44544

Pr(chi2(19) > W) = 0.0163

The multiple-equations command regh expects input via equations.

. eq mean : contract volume depend past future network

. eq var : volume past
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. regh mean var

iteration 1: Log-likelihood = -80.76063 |delta-b| 2.126929

iteration 2: Log-likelihood = -78.22403 |delta-b| .2676002

iteration 3: Log-likelihood = -78.05332 |delta-b| .0455286

iteration 4: Log-likelihood = -78.04507 |delta-b| .0167279

iteration 5: Log-likelihood = -78.04482 |delta-b| .0032507

iteration 6: Log-likelihood = -78.04482 |delta-b| .0005627

Multiplicative heteroscedastic regression Number of obs = 94

Estimator: mle Model chi2(7) = 288.008

Prob > chi2 = 0.000

Log Likelihood = -78.045 Pseudo R2 = 0.6485

VWLS R2 = 0.9659

------------------------------------------------------------------------------

contract | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mean |

volume | .631765 .0351336 17.982 0.000 .5629045 .7006255

depend | .4844798 .0297727 16.273 0.000 .4261265 .5428332

past | -.2116046 .005701 -37.117 0.000 -.2227784 -.2004308

future | -.4432523 .0231963 -19.109 0.000 -.4887163 -.3977883

network | -.2814385 .0231456 -12.159 0.000 -.326803 -.236074

_cons | .2489145 .2559325 0.973 0.331 -.2527041 .7505331

---------+--------------------------------------------------------------------

var |

volume | .5516058 .1561316 3.533 0.000 .2455935 .857618

past | -.2210131 .0179103 -12.340 0.000 -.2561166 -.1859097

_cons | -3.527318 .9874938 -3.572 0.000 -5.462771 -1.591866

------------------------------------------------------------------------------

The multi-panel output will look familiar to experienced Stata users. According to the estimated model, (the expected amount
of) contracting increases with the volume and dependency associated with the transaction, and decreases with common past,
expected common future, and common network ties. The variance of the residuals increases with the volume of the transaction,
and decreases with a common past. Comparing the output of fit, robust to regh, it is obvious that the robust standard errors
of OLS-estimates are much larger than those of the regh-model, and so the 95% confidence intervals have shrunk drastically.

Having improved our estimates of regression-coefficients, we cannot, however, be very confident that we modeled the
heteroscedasticity correctly. Thus, we may be estimating the standard errors of the regh-coefficients inconsistently. This problem
can be remedied via robust estimation of standard errors in the regh model.

. regh mean var, robust nolog

Multiplicative heteroscedastic regression Number of obs = 94

Estimator: mle Model chi2(7) = 288.008

Prob > chi2 = 0.000

Log Likelihood = -78.045 Pseudo R2 = 0.6485

VWLS R2 = 0.9659

------------------------------------------------------------------------------

| Robust

contract | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mean |

volume | .631765 .0373337 16.922 0.000 .5585923 .7049378

depend | .4844798 .0301037 16.094 0.000 .4254776 .5434821

past | -.2116046 .0057706 -36.669 0.000 -.2229148 -.2002944

future | -.4432523 .024733 -17.922 0.000 -.4917281 -.3947766

network | -.2814385 .0164501 -17.109 0.000 -.3136801 -.2491969

_cons | .2489145 .2852164 0.873 0.383 -.3100994 .8079285

---------+--------------------------------------------------------------------

var |

volume | .5516058 .1722091 3.203 0.001 .2140822 .8891293

past | -.2210131 .0208703 -10.590 0.000 -.2619182 -.1801081

_cons | -3.527318 1.090857 -3.234 0.001 -5.665359 -1.389277

------------------------------------------------------------------------------

Comparing the standard errors of regh with the robust standard errors of regh, robust, we conclude the effects of the
possible misspecification of heteroscedasticity are apparently rather mild.

Note that regh produces a trace of the iterative process of computing maximum-likelihood estimates that is similar to the
standard Stata’s trace—I added the L2-norm of the change in the parameter vectors to better trace progress for ill-conditioned
problems for which convergence was problematic before I introduced step-halving in the algorithm.
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So far we have shown output of regh for maximum-likelihood estimators based on the assumption that the residuals are
normally distributed. If you distrust this assumption strongly, you may prefer Harvey’s two-stage least squares estimates (2SLS).
Note that under normality, the approximate standard errors of maximum-likelihood estimators are roughly 1.4 times smaller than
those of 2SLS estimators (Harvey 1976).

. regh mean var, twostage

Multiplicative heteroscedastic regression Number of obs = 94

Estimator: 2sls Model chi2(7) = 222.900

Prob > chi2 = 0.000

Log Likelihood = -110.599 Pseudo R2 = 0.5019

VWLS R2 = 0.9027

------------------------------------------------------------------------------

contract | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

mean |

volume | .9070136 .0651181 13.929 0.000 .7793844 1.034643

depend | .4112368 .0543363 7.568 0.000 .3047396 .517734

past | -.224738 .0088016 -25.534 0.000 -.2419888 -.2074872

future | -.218904 .0426059 -5.138 0.000 -.30241 -.1353981

network | -.3401932 .0420307 -8.094 0.000 -.4225718 -.2578146

_cons | -1.679443 .4606367 -3.646 0.000 -2.582274 -.7766116

---------+--------------------------------------------------------------------

var |

volume | .3422644 .2452509 1.396 0.163 -.1384185 .8229472

past | -.1401075 .0281334 -4.980 0.000 -.1952479 -.0849671

_cons | -2.081192 1.551151 -1.342 0.180 -5.121393 .9590086

------------------------------------------------------------------------------

Notes and references

Harvey (1976) suggests a 2SLS-estimator in which yi is regressed on xi to estimate �, and to regress the log-squared-residuals
of this regression on zi to estimate . After adding 1.2704 to b0, this estimator of �; ) is consistent (Harvey 1976). This
estimator is available with the option twostage.

To compute maximum-likelihood estimators for normally distributed residuals, regh uses Harvey’s alternating scoring
algorithm, starting from the 2SLS estimator (See also Greene 1993). I added step-halving to improve stability of the algorithm.
In my experience, this algorithm is fast and converges well.

Robust standard errors and the adaptation of the standard errors for clustered observations follows the method implemented
by the robust command in Stata.
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sg78 Simple and multiple correspondence analysis in Stata

Philippe Van Kerm, University of Namur, Belgium, philippe.vankerm@fundp.ac.be

Correspondence analysis is a technique that often turns out to be helpful when one wants to analyze large cross-tabular
data (see Benzecri and Benzecri 1980 or Greenacre and Blasius 1994). It results in a simple graphical display which permits
rapid interpretation and understanding of the data. It is currently available in a number of statistical packages (e.g. SPSS, SAS,
or BMDP), but not in Stata 5.0. This insert aims at filling this gap (at least partly). The commands coranal and mca provide
the general features of simple and multiple correspondence analysis and are designed for standard applications. Admittedly, they
might be inefficient for more specific uses and suffer from some deficiencies outlined below. As I am not myself an experienced
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user of these techniques, I will neither enter into technicalities nor provide precise explanations on how to use and interpret the
results. Furthermore, the very simple example provided here is just intended to give an idea about how the output can look; it
does not substitute for an introductory text. The references given at the end of the insert should accomplish these tasks much
better than I can.

The two major drawbacks of the current versions of the procedures are 1) the aspect ratio distortion of the maps (the scales
on the vertical axes are usually different from that on the horizontal axes—this is innocuous in most graphs but it may sometimes
be misleading if one is not aware of this); it may be necessary to edit the graphs to solve this problem, and 2) the absence of
an option for including supplementary points in the analysis; this ought to be made available in the future.

Future developments of these commands should also include the creation of immediate command versions or quasi-immediate
commands; that is, using cross-tabulations or matrices as inputs and not just raw data. However, a trick for doing so with the
current version is suggested in the help file for coranal.

Simple correspondence analysis

The command coranal produces numerical results as well as graphical outputs for simple correspondence analyses (that
is, analyses of two-way cross-tabulations of variables, or said differently, analyses of contingency tables). The computation
algorithm draws, on an almost step-by-step basis, on Blasius and Greenacre (1994).

Syntax

coranal var1 var2
�
weight

� �
if exp

� �
in range

� �
, d(#) q(#) asymmetric

�
aweights, fweights, and iweights are allowed.

Options

d(#) specifies the number of dimensions to be considered (for both numerical and graphical displays). If d(0) is specified,
then coranal provides no graphical display and returns the numerical output for all nontrivial dimensions. For maps to
be readable, # must be set larger than 1. Furthermore, consistent maps can only be obtained by specifying # lower than or
equal to the number of underlying non-trivial dimensions. The default # is 0.

q(#) specifies a quality of representation threshold (0 <#� 1). It restricts the mappings to points satisfying the condition that
their quality of representation (sum of contributions of principal axes) in the d(#) first dimensions is higher than or equal
to #. Rejected points are still mapped but symbolized by a dot.

asymmetric specifies that the joint displays of var1 and var2 are to be presented in the form of asymmetric maps (both variables
are taken as vertices consecutively). By default, symmetric maps are displayed.

Example

To briefly illustrate the command, consider the following example. The dataset exca.dta (included with this insert) contains
a fictional survey. Available individual characteristics are the main leisure-time activity (VAR1), the age group (VAR2), the place
of birth (VAR3) and the gender (VAR4). Say we want to explore the links between age groups and leisure-time activity.

. tab VAR1 VAR2 ,chi row

| VAR2

VAR1 | Child Teenage Adult Elderly | Total

-----------+--------------------------------------------+----------

TV | 12 5 3 4 | 24

| 50.00 20.83 12.50 16.67 | 100.00

-----------+--------------------------------------------+----------

Walk | 1 1 4 1 | 7

| 14.29 14.29 57.14 14.29 | 100.00

-----------+--------------------------------------------+----------

Cook | 1 0 2 6 | 9

| 11.11 0.00 22.22 66.67 | 100.00

-----------+--------------------------------------------+----------

Sport | 5 8 4 1 | 18

| 27.78 44.44 22.22 5.56 | 100.00

-----------+--------------------------------------------+----------

Games | 11 2 1 3 | 17

| 64.71 11.76 5.88 17.65 | 100.00

-----------+--------------------------------------------+----------

Total | 30 16 14 15 | 75

| 40.00 21.33 18.67 20.00 | 100.00

Pearson chi2(12) = 33.9076 Pr = 0.001
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This table and the �2 statistic reveals that there indeed exists a strong relation between the two variables. Let us apply
now a simple correspondence analysis on this table for an easy representation of the apparent associations between the various
categories (see the references given below for complete explanations about the interpretations of the following numerical and
graphical output).

. coranal VAR1 VAR2

------------------------------------------------------------------------------

SIMPLE CORRESPONDENCE ANALYSIS

------------------------------------------------------------------------------

Total Inertia : 0.452

Principal Inertias and Percentages :

Inertia Share Cumul

Dim1 0.235 0.519 0.519

Dim2 0.173 0.382 0.902

Dim3 0.045 0.098 1.000

VAR1 coordinates :

Mass Inertia Dim1 Dim2 Dim3

VAR1:1 0.320 0.016 -0.121 0.191 0.014

VAR1:2 0.093 0.093 0.221 -0.842 0.490

VAR1:3 0.120 0.182 1.213 -0.039 -0.213

VAR1:4 0.240 0.096 -0.443 -0.388 -0.229

VAR1:5 0.227 0.065 -0.094 0.509 0.133

VAR2 coordinates :

Mass Inertia Dim1 Dim2 Dim3

VAR2:1 0.400 0.092 -0.224 0.406 0.121

VAR2:2 0.213 0.098 -0.531 -0.297 -0.297

VAR2:3 0.187 0.103 0.159 -0.673 0.269

VAR2:4 0.200 0.160 0.866 0.132 -0.177

Explained inertia of axis by VAR1 :

Dim1 Dim2 Dim3

VAR1:1 0.0198 0.0672 0.0014

VAR1:2 0.0193 0.3829 0.5038

VAR1:3 0.7518 0.0011 0.1225

VAR1:4 0.2006 0.2088 0.2817

VAR1:5 0.0085 0.3400 0.0906

Explained inertia of axis by VAR2 :

Dim1 Dim2 Dim3

VAR2:1 0.0856 0.3820 0.1324

VAR2:2 0.2558 0.1086 0.4222

VAR2:3 0.0202 0.4892 0.3040

VAR2:4 0.6384 0.0202 0.1415

Contributions of principal axes to VAR1 :

Dim1 Dim2 Dim3

VAR1:1 0.2850 0.7112 0.0038

VAR1:2 0.0488 0.7104 0.2408

VAR1:3 0.9690 0.0010 0.0299

VAR1:4 0.4919 0.3771 0.1310

VAR1:5 0.0307 0.9071 0.0623

Contributions of principal axes to VAR2 :

Dim1 Dim2 Dim3

VAR2:1 0.2185 0.7175 0.0641

VAR2:2 0.6151 0.1923 0.1925

VAR2:3 0.0461 0.8223 0.1316

VAR2:4 0.9387 0.0219 0.0395

var1lb:

1 TV

2 Walk

3 Cook

4 Sport

5 Games

var2lb:

1 Child

2 Teenage

3 Adult

4 Elderly
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The first table reveals that it is possible to obtain a two-dimensional graphical representation of the observed relation between
VAR1 and VAR2 by, very roughly speaking, retaining 90 percent of information as Dim1 and Dim2 account for 90 percent of total
inertia (note that the total inertia is equal to the �2 statistic divided by the number of observations).

. coranal VAR1 VAR2 ,d(2)

(output omitted )
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Figure 1: An example of simple correspondence analysis

On this graph, we can now observe how (dis-)similar are the profiles of the row points (or column points): categories that
are similar to each other regarding their distribution over the categories of the other variable are plotted close to each other in the
figure. Basically, the distances between the row points (or column points) in this display are to be seen as the best approximations
in two dimensions of the �2 distances between the row profiles (or column profiles) in Euclidian space. Note that the exact
location of a point is situated right in the middle of the label name.

By default, coranal produces such “symmetric” maps which are usually more readable. Yet the distances between VAR1

points and VAR2 points are not directly comparable. To interpret such distances one has to display “asymmetric” maps (set the
asymmetric option). We might also seek to avoid interpreting points for which the quality of representation is judged to be
low (below 85 percent, say), where quality is measured by the contributions of the first two principal axes. Note that this is a
very high threshold level.

. coranal VAR1 VAR2 ,d(2) as q(0.85)

(output omitted )
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Figure 2: Using the asymmetric and q options

The points representing the profiles of the “Teenage” category and the “Walk” activity have been removed from the display
since their quality of representation is below 85 percent. In this display, the activities have been taken as vertices to which the
position of the age groups are to be compared. We could now observe, for instance how “Cook” is related to the remaining age
groups: this occupation is apparently more a delight for the “Elderly” then for the “Adult” and eventually for the “Child” since
the distance between the vertex “Cook” and the “Elderly” group is the smallest, the next smallest being with the “Adult” group
and so on. This actually represents the row profile of “Cook” in the cross-tabulation of VAR1 and VAR2 above in the right order.
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Multiple correspondence analysis

The command mca produces numerical results and graphical representations for multiple correspondence analyses (MCA).

It must be emphasized that there is some controversy about the use and implementation of multiple correspondence
analyses (see Greenacre 1984, 1993, 1994). mca actually conducts an adjusted simple correspondence analysis on the Burt matrix
constructed with varlist (i.e. matrix of frequency counts resulting from all two-way cross-tabulations of the variables in varlist
including the cross-tabulations of each variable with itself). It can be shown that the total inertia of the Burt matrix is high
due to the fitting of the diagonal sub-matrices. Consequently, a simple correspondence analysis applied to this matrix usually
results in maps of apparently poor quality. As a remedy, if not otherwise specified, mca adjusts the obtained principal inertias
(eigenvalues) following a method suggested by Benzecri and presented in Greenacre (1984).

The computation algorithm draws most largely on Blasius and Greenacre (1994) and Greenacre (1994).

Syntax

mca varlist
�
weight

� �
if exp

� �
in range

� �
, d(#) q(#) notrans

�
aweights, fweights, and iweights are allowed.

Options

d(#) specifies the number of dimensions to be considered (for both numerical and graphical displays). If d(0) is specified, then
mca provides no graphical display and returns the numerical output for all nontrivial dimensions. For maps to be readable,
# must be set larger than 1. Furthermore, consistent maps can only be obtained by specifying # lower than or equal to the
number of underlying nontrivial dimensions. Default # is 0.

q(#) specifies a quality of representation threshold (0 <#� 1). It restricts the mappings to points satisfying the condition that
their quality of representation (sum of contributions of principal axes) in the d(#) first dimensions is higher than or equal
to #. Rejected points are still mapped but symbolized by a dot. Note that the appropriateness of this option is somewhat
questionable in the case of multiple correspondence analyses due to the above outlined inertia inflation of Burt matrices.

notrans requests that no adjustments to eigenvalues be made.

Example

To illustrate mca, let us return to our fictional survey dataset. We want now to have an idea about how all the variables
relate to each other and not only VAR1 and VAR2. Say we conjecture that keeping two dimensions will retain enough information.
We can use

. mca VAR1 VAR2 VAR3 VAR4, d(2)

------------------------------------------------------------------------------

MULTIPLE CORRESPONDENCE ANALYSIS

------------------------------------------------------------------------------

Total Inertia : 0.108

Principal Inertia Components :

Inertia Share Cumul

Dim1 0.060 0.557 0.557

Dim2 0.027 0.248 0.805

Coordinates :

Mass Inertia Dim1 Dim2

VAR1_1 0.080 0.004 -0.105 0.155

VAR1_2 0.023 0.008 0.402 -0.262

VAR1_3 0.030 0.016 0.652 -0.037

VAR1_4 0.060 0.011 -0.309 -0.300

VAR1_5 0.057 0.004 -0.034 0.226

VAR2_1 0.100 0.006 -0.113 0.195

VAR2_2 0.053 0.011 -0.371 -0.251

VAR2_3 0.047 0.011 0.338 -0.243

VAR2_4 0.050 0.009 0.306 0.105

VAR3_1 0.103 0.005 0.192 -0.087

VAR3_2 0.027 0.007 0.002 0.369

VAR3_3 0.120 0.005 -0.165 -0.007

VAR4_1 0.110 0.007 -0.239 -0.008

VAR4_2 0.140 0.005 0.188 0.006

Explained inertia of axes :

Dim1 Dim2

VAR1_1 0.0148 0.0717

VAR1_2 0.0629 0.0599
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VAR1_3 0.2120 0.0015

VAR1_4 0.0954 0.2016

VAR1_5 0.0011 0.1084

VAR2_1 0.0211 0.1421

VAR2_2 0.1221 0.1261

VAR2_3 0.0887 0.1027

VAR2_4 0.0778 0.0205

VAR3_1 0.0631 0.0293

VAR3_2 0.0000 0.1355

VAR3_3 0.0546 0.0002

VAR4_1 0.1044 0.0003

VAR4_2 0.0820 0.0002

Contributions of principal axes :

Dim1 Dim2

VAR1_1 0.2389 0.5144

VAR1_2 0.4695 0.1991

VAR1_3 0.7990 0.0025

VAR1_4 0.5110 0.4807

VAR1_5 0.0167 0.7186

VAR2_1 0.2229 0.6668

VAR2_2 0.6621 0.3043

VAR2_3 0.4874 0.2513

VAR2_4 0.5265 0.0618

VAR3_1 0.7664 0.1585

VAR3_2 0.0000 0.5529

VAR3_3 0.6792 0.0012

VAR4_1 0.9385 0.0011

VAR4_2 0.9385 0.0011
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Figure 3

Unfortunately, maps resulting from multiple correspondence analyses may result in rather inextricable displays (as in this
example) which may be difficult to interpret. By looking carefully at the numerical output and the figure, we can observe that the
preceding MCA reveals, for instance, a certain tendency for the activities of the type “Walk” (VAR1 2) and “Cook” (VAR1 3) to be
more associated with women (VAR4 2) while “TV” (VAR1 1) and “Sport” (VAR1 4) seem more associated with men (VAR4 1). It
appears also that there is apparently relatively more women in the oldest age groups (VAR2 3 and VAR2 4) than in the youngest
(VAR2 1 and VAR2 2).
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sg79 Generalized additive models

Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk
Gareth Ambler, Imperial College School of Medicine, UK, gambler@rpms.ac.uk

[Editor’s note: the gam program is only available for Stata for Windows.]

Introduction

Generalized Additive Models (GAMs) are flexible extensions of Generalized Linear Models (GLMs). Whereas the link
function in a GLM is a linear combination of the predictors, in a GAM the link function may include flexible functions of arbitrary
complexity based (for example) on smoothing splines. The amount of smoothing applied to each predictor is controlled by the
user according to a quantity known as the equivalent degrees of freedom (df). The GLM is the special case with 1 df for each
predictor.

GAMs may be used for exploratory analysis when one knows very little about the functional forms in a dataset. Plots of the
smooth functions and a related significance test may assist the user to detect nonlinear relationships that were previously hidden.
GAMs may also be useful to suggest functional forms for parametric modeling or for checking an existing parametric model for
bias. A plot of the smooth function together with the corresponding parametric function for a given predictor may reveal “hot
spots” of poor fit.

Generalized additive modeling is implemented in a FORTRAN program named GAMFIT. It was written by T. J. Hastie and R.
J. Tibshirani, who introduced and developed the GAM, and is available from Statlib http://lib.stat.cmu.edu/general/.
Here we provide an ado-file, gam, which is an interface between Stata and a slightly modified version of the FORTRAN program.
We have only implemented the procedure to work on Windows platforms. The user is completely shielded from the original
program. gam has the following basic syntax:

gam yvar xvars
�
if exp

� �
in range

� �
major options minor options

�
Full details are given in the section Syntax of the gam command.

In this implementation cubic smoothing splines are used to estimate the flexible functions, although many other types of
estimator could have been used such as kernel smoothers or locally weighted running line smoothers (lowess). In addition, gam
can fit additive proportional hazards models to survival data. Details of all these methods can be found in Hastie and Tibshirani
(1990a).

The generalized additive model

We now discuss the generalized additive model, dealing with the additive proportional hazards model in the next section.
The link function g(�) for a GAM with q predictors x1; : : : ; xq has the form

g(�) = �+

qX
j=1

fj(xj)

where the fj’s are smooth functions of the predictors. The “additive” in GAM refers to the fact that the predictor effects are
assumed to be additive on the scale of the link function. The “generalized” alludes to the fact that we can use the error structures
and link functions that are available with generalized linear models.

As a running example, we use data in the file kyph.dat derived from 81 patients who underwent corrective spinal surgery.
The aim of the study was to assess the incidence of spinal deformities following surgery, and discover how various predictors
affect this. The response y is binary with y = 1 denoting the presence of kyphosis, which is defined to be a forward flexion of
the spine of at least 40 degrees, and y = 0 denoting an absence. There are 3 predictors, age at time of surgery (age), the starting
range of vertebrae levels involved in the operation (start), and the number of vertebral levels involved (number). These data
were collected by Bell et al. (1994) and have previously been analyzed with GAMs by Hastie and Tibshirani (1990a).

We use a logistic additive model for these data and allow each function to have 4 degrees of freedom (df ) via the df option.
This option is very important since it controls the flexibility of the function estimators. The actual value of df for a predictor
may be viewed as the number of parameters it uses. We now illustrate how the value of df can affect function estimates.

We fit the model logit (p) = � + f(age) using different values of df . We chose the values 1, 4 and 15. Figure 1 shows
the fitted values from these models on the probability scale. The 1 df model is the linear model logit (p) = �+ � � age and the
estimates are the same as those produced by logit or logistic. The estimated smooth functions for the 4 df and 15 df exhibit
a large amount of curvature, with the 15 df model displaying implausible wiggles everywhere, showing that it is overfitted. This
demonstrates that care needs to be taken when using the df option.
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Figure 1: Fitted values for three values of degrees of freedom

The Stata command to fit the multivariable model with age, start, and number is

. gam y age start number,df(4) family(binomial)

which results in the following output:

Generalized Additive Model with family binom, link logit.

Model df = 13.299 No. of obs = 81

Deviance = 44.1354 Dispersion = 1

----------+-----------------------------------------------------------

y | df Lin. Coef. Std. Err. z Gain P>Gain

----------+-----------------------------------------------------------

age | 3.874 .0191194 .0055689 3.433 7.929 0.0430

start | 4.220 -.3131638 .0633463 -4.944 7.922 0.0563

number | 4.205 .3795253 .1825391 2.079 4.735 0.2159

_cons | 1 -2.72886 .311933 -8.748 . .

----------------------------------------------------------------------

Total gain (nonlinearity chisquare) = 20.586 (9.299 df), P = 0.0171

This table is similar in many ways to the table produced using the logit command with columns relating to the linear
coefficient, its standard error, and z score. However, there are additional columns relating to the degrees of freedom (df) and
gain. The table reveals that the df used with each predictor is not equal to the exact value requested. This is because the program
makes its best guess at the requested df initially and calculates the exact values at the convergence of the procedure. These
values rarely agree exactly. We have noticed that transforming the predictors to approximate normality (see [R] lnskew0) can
improve the accuracy of the final values, although the fitted functions will be different.

The gain allows us to assess apparent nonlinearities in the fitted functions. The gain for a given predictor is the deviance
increase (i.e. worsening of fit) that occurs if a linear term is used to model the predictor instead of the smooth term. Predictors
which are modeled linearly (df = 1) have no entries in the Gain column. The final column refers to an approximate significance
test on the smooth function. Under the hypothesis that any nonlinearities in the smooth function are artifactual, the gain is
assumed to have a chi-squared distribution with degrees of freedom equal to df � 1, which can be interpreted as the number
of degrees of freedom associated with the nonlinear part of the relationship with the outcome variable. We subtract one to
allow for the linear component of the smoothing spline fit whose coefficient is given in the Lin. Coef column, followed by its
standard error. The nonlinear df is usually noninteger valued and the test statistic has approximately a gamma distribution with
the appropriate parameters.

An examination of the table indicates that only the functions for age and start show any signs of nonlinearity. The model
may be simplified and we do this using a stepwise procedure suggested by Hastie and Tibshirani (1990a). Each term may be
specified as smooth with 4 df , linear, or excluded from the model. Starting with the model with every term specified as smooth
we arrive at the model without number, whose command line is

. gam y age start,df(4) family(binomial)

This produces the following table of results:
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Generalized Additive Model with family binom, link logit.

Model df = 9.071 No. of obs = 81

Deviance = 49.9137 Dispersion = 1

----------+-----------------------------------------------------------

y | df Lin. Coef. Std. Err. z Gain P>Gain

----------+-----------------------------------------------------------

age | 3.848 .0131614 .0062991 2.089 7.826 0.0441

start | 4.223 -.2850923 .0641426 -4.445 9.184 0.0323

_cons | 1 -2.0261 .349529 -5.797 . .

----------------------------------------------------------------------

Total gain (nonlinearity chisquare) = 17.011 (6.071 df), P = 0.0097

In addition to the table, we obtain information about the fit from several new variables created automatically by gam.
GAM mu holds the fitted values on the original scale of the response, and information on the individual predictors is found in the
variables prefixed by s , e and r . For example, including age in the model leads to creation of the variables s age, r age,
and e age. The variables prefixed by s are the smooth function estimates, those prefixed by e are the pointwise standard errors
of the estimates, and those prefixed by r are the partial residuals which we now describe in detail.

The algorithm for fitting GAMs involves two iterative loops which are executed until convergence of the estimates occurs.
The outer loop, the so-called local scoring algorithm, is similar to the Fisher scoring algorithm used to fit GLMs. This sets up an
“adjusted dependent variable” used by the inner loop and recalculates weightings. The inner loop, the backfitting algorithm, fits
a weighted additive model with the adjusted dependent variable as the response. The latter is assumed to be normally distributed
although the variances are heterogeneous. Within the backfitting algorithm the weighted partial residuals for each predictor are
smoothed as functions of the predictor values. The partial residuals for a given predictor are the raw residuals with the effect of
the predictor removed. For example, if we denote the adjusted dependent variable by zi and the current estimated functions bybfj(xij) then the partial residuals for the kth predictor are given by

rik = zi � b��X
j 6=k

bfj(xij)
We give plots of the smooth functions and their pointwise standard errors for age and start in Figure 2. The standard

errors give an idea of the accuracy of the estimated function at each observed predictor value but they do not provide global
estimates of the uncertainty in the function.
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Figure 2: Smooth functions and standard errors for age and start

These plots reveal that each function appears to model the relationships in the data well.

The additive proportional hazards model

One can use the gam command to fit the additive proportional hazards model. This model, introduced by Hastie and
Tibshirani (1990b), extends the familiar semiparametric model of Cox (1972) by allowing flexible predictor effects. The additive
proportional hazards model has the form
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�(tjx1; : : : ; xq) = �0(t) exp

8<:
qX

j=1

fj(xj)

9=;
where �0(t) is the baseline hazard and the fj(xj) are smooth functions which are estimated using smoothing splines.

We now present an example of the use of gam with survival data (given in the file pbc.dat) on 312 patients with primary
biliary cirrhosis (PBC) who were referred to the Mayo Clinic between 1974 and 1984. They participated in a randomized,
placebo-controlled trial of the drug D-penicillamine. Patients were followed up until July 1986 for survival status, and 125 died.
The response t is survival time and the predictors we use are age (age), presence of edema (edm), serum bilirubin (bil),
albumin (alb) and prothombin time (pro). Of these predictors, edm has 3 categories and is split into two indicator variables
edm2 and edm3. The censoring variable is denoted by cens. No difference in the survival times of the treated and untreated
patients were detected, so we exclude the treatment variable from the model. More details of the study can be found in Fleming
and Harrington (1991).

Initially we fit an additive proportional hazards model using

. gam t age bil alb pro edm2 edm3,dead(cens) df(4, edm2 edm3:1) family(cox)

which allows every predictor 4 df except edm2 and edm3 which are binary and so are given 1 df . This results in the following
table:

Generalized Additive Model with family cox, link cox.

Model df = 19.606 No. of obs = 312

Deviance = 1065.37 Dispersion = 1

----------+-----------------------------------------------------------

t | df Lin. Coef. Std. Err. z Gain P>Gain

----------+-----------------------------------------------------------

age | 4.108 .0341721 .0090497 3.776 7.352 0.0666

bil | 4.687 .1273225 .0156951 8.112 35.737 0.0000

alb | 4.451 -1.054681 .2099035 -5.025 2.546 0.5472

pro | 4.360 .2878167 .0935668 3.076 5.002 0.2108

edm2 | 1 .186678 .2781 0.671 . .

edm3 | 1 .949492 .298307 3.183 . .

----------------------------------------------------------------------

Total gain (nonlinearity chisquare) = 50.637 (13.606 df), P = 0.0000

After dropping edm2 and any smooth terms which do not significantly contribute to the fit we arrive at the model presented
below:

Generalized Additive Model with family cox, link cox.

Model df = 9.447 No. of obs = 312

Deviance = 1076.57 Dispersion = 1

----------+-----------------------------------------------------------

t | df Lin. Coef. Std. Err. z Gain P>Gain

----------+-----------------------------------------------------------

age | 1 .0355328 .0086492 4.108 . .

bil | 5.447 .1286926 .0158869 8.101 37.744 0.0000

alb | 1 -1.031641 .2200582 -4.688 . .

pro | 1 .2603843 .0838921 3.104 . .

edm3 | 1 .947819 .285888 3.315 . .

----------------------------------------------------------------------

Total gain (nonlinearity chisquare) = 37.744 (4.447 df), P = 0.0000

This table reveals that there is a strong nonlinear relationship involving serum bilirubin (bil). Figure 3 shows the smooth
function for this variable and suggests that a logarithmic transformation of bil would be suitable as a simple parametric model.
No partial residuals are shown as these are not created for the Cox model.

(Figure 3 on the next page)
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Figure 3: The smooth function for serum bilirubin for PBC data

We note that Figures 2 and 3 were produced using the gamplot program which we also provide. gamplot allows the user
to easily plot the smooth functions produced by gam with options to include partial residuals and standard error bands. Full
details are given in the section entitled Syntax of the gamplot command.

Syntax of the gam command

gam yvar xvars
�
weight

� �
if exp

� �
in range

� �
, major options minor options

�
aweights and fweights are allowed.

We note that gam expects to find the FORTRAN executables in the directory c:nado. If they are not stored here, the global macro
GAMDIR needs to be set. For example if the FORTRAN executable is stored in d:nmyadon, you would enter

global GAMDIR d:nmyadon
before calling gam.

Options

The major options (most used options) are

family(family name) link(link name) df(dflist) dead(deadvar)

where family name is one of the following

gaussian j binomial j poisson j gamma j cox
and link name is one of the following

identity j logit j log j inverse j cox

The minor options (less used options) are

big missing(#) noconstant

Major options

family(family name) specifies the distribution of yvar. The default is family(gaussian).

link(link name) specifies the link function. The default for each family are the canonical links: identity for family gauss,
logit for binomial, log for poisson, inverse for gamma and (by convention) cox for cox.

df(dflist) sets up the degrees of freedom (df ) for each predictor. These values need not be integers. An item in dflist may be
either # or xvarlist: #, where xvarlist is a subset of xvars. Items are separated by commas. With the first type of item, the
df for all predictors are taken to be #. With the second type of item, all members of xvarlist have # df. If an item of the
second type follows one of the first type, the later # overrides the earlier # for each variable in xvars. The default value is
1 for each predictor.

dead(deadvar) only applies to Cox regression where deadvar is the censoring status variable (0 for censored, 1 for “dead”).
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Minor options

big asks for the large-problem version of the GAMFIT FORTRAN program, gambig.exe. The largest problem that can be fit is
70,000 reals in the standard version of GAMFIT (gamfit.exe) and 1,000,000 reals in the big version (gambig.exe). These
quantities are the amount of storage needed by the FORTRAN programs, not the amount of data stored in Stata. The problem
size is approximated by the following formula: reals = 1000�N � (vsize0:2)=25 where N is the number of observations
in the problem and vsize is the total number of variables, including the constant and cens var if a Cox model is fit. For
example, for a model with a constant and a single predictor (vsize = 2) the biggest problems that can be fit are N = 1523
and N = 21764 for the standard and big versions respectively.

noconstant specifies that the model shall not have an intercept.

missing(#) defines the missing value code seen by gam to be #, which must be a number. The default is 9999. The FORTRAN

program is able to impute missing values. See Hastie and Tibshirani (1990a) for more details.

Syntax of the gamplot command

gamplot xvar
�
xvar2

� �
if exp

� �
in range

� �
, noconf nopres se(#) abs(#) graph cmd options

�
where xvar is a member of xvarlist. If xvar2 is specified the functions are plotted against this variable.

Options

noconf suppresses the plotting of the pointwise standard errors.

nopres suppresses the addition of partial residuals on the plot.

se(#) determines the width of the standard error bands. The default is 0.95 which corresponds to 95% coverage (using assumptions
of normality).

abs(#) is the maximum permitted distance between the smooth function and the partial residuals. Any partial residuals which
exceed this value will not be plotted. The user is made aware of this. The default is 10�15.

graph cmd options are options appropriate to graph. The only options that cannot be used are sort, symbol, connect, and
pen as these are already being used.

Warning

We cannot vouch for the results from the FORTRAN software gamfit.exe and have occasionally noticed anomalies. However
we believe it to be reliable in the vast majority of instances. gam can fail to converge with Cox regression and can occasionally
cause Stata to shut down without warning. We find that this problem can usually be cured by changing the values of df slightly.

We also note that (non-binary) predictors are standardized before analysis. As a result the estimate and standard error of
the intercept will differ from those produced using Stata commands such as logit, cox, and regress.
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sg80 Indirect standardization

Mario Cleves, Stata Corporation, mcleves@stata.com

Syntax

istdize casevars popvars stratavars using filename [if exp] [in range],

fpopvars(casevarp popvarp) j rate(ratevarp #j crudevarp)g
�
by(groupvars) print format(%fmt) level(#)

�
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Description

istdize produces indirectly standardized rates for a study population based on a standard population. This standardization
method is indicated when stratum-specific rates for the population being studied are either unavailable or are based on small
samples and thus unreliable. The standardization uses the stratum-specific rates of a standard population to calculate the expected
number of cases in the study population(s), sums them, and then compares them to the actual number of cases observed. The
standard population’s information is contained in another Stata data file and specified via using on the command line.

In addition to the indirectly standardized rate, the command produces point estimates and exact confidence intervals of the
study population’s standardized mortality ratio (SMR) if death is the event of interest or the standardized incidence ratio (SIR) for
studies of disease incidence. Here we refer to both ratios as SMR.

casevars is the variable name for the study population’s number of cases (deaths). It must contain integers and each
subpopulation identified by groupvar must have the same values or missing.

popvars identifies the number of subjects represented by each observation in the study population.

stratavars define the strata.

Options

popvars(casevarp popvarp) or rate(ratevarp #jcrudevarp) must be specified. Only one of these two options is allowed.
These options are used to describe the standard population’s data where:

popvars(casevarp popvarp): casevarp records the number of cases (deaths) for each stratum in the standard population.
popvarp records the total number of individuals in each stratum (individuals at risk).

rate(ratevarp #jcrudevarp): ratevarp contains the strata specific rates. #jcrudevarp is used to specify the crude case rate
either via a variable name or optionally by the crude case rate value. If a crude rate variable is used it must be the same
for all observations, although, it could be missing for some.

by(groupvars) specifies variables identifying study populations when more than one exist in the data. If this option is not
specified the entire study population is treated as one group.

print outputs a table summary of the standard population before displaying the study population results.

format(%fmt) specifies the format to use for displaying the summary table. The default is %10.0g.

level(#) specifies the confidence level, in percent, for the confidence interval of the adjusted rate and the SMR; see [R] level.

Remarks

Standardization of rates can be performed via the indirect method whenever the stratum-specific rates are either unknown or
unreliable. In situations were the stratum specific rates are known, the direct standardization method is preferred. See [R] dstdize.

In order to apply the indirect method the following must be available:

1. The observed number, O, of cases in each population to be standardized. For example, if death rates in two states are being
standardized using the US death rate for the same time period, then you must know the total number of deaths in each state.

2. The distribution, n1; : : : ; nk, across the various strata for the population being studied. If you are standardizing the death
rate in the two states adjusting for age, then you must know the number of individuals in each of the k age groups.

3. The strata specific rates, p1; : : : ; pk, for the standard population. You must have the US death rate for each stratum (age
group).

4. The crude rate, C, of the standard population. For example, the mortality rate for all of the US for the year.

Then the expected number of cases (deaths), E, in each population is obtained by applying the standard population strata-specific
rates, p1; : : : ; pk, to the study population’s as

E =

kX
i=1

nipi

The indirect adjusted rate is then

Rindirect = C
O

E

and O=E is the study population’s standardized mortality ratio (SMR) if death is the event of interest or the standardized incidence
ratio (SIR) for studies of disease incidence.
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The exact confidence interval is calculated for each estimated SMR by assuming a Poisson process as described in Breslow
and Day (1980, 69–71). These are obtained by first calculating the upper and lower bounds for the confidence interval of the
Poisson distributed observed events, O, say L and U respectively, and then computing: SMRL = L=E and SMRU = U=E.

Example

This example is borrowed from Kahn and Sempos (1989, 95–105). We want to compare 1970 mortality rates in California
and Maine adjusting for age. Although we have age-specific population counts for the two states, we lack age-specific death
rates. In this situation, direct standardization is not feasible. Since we have the US population census data for the same year, we
can produce indirectly standardized rates for the two states.

The United States census, the standard population in this example, was entered into Stata and saved in popkahn.dta.

. use popkahn

. list age pop deaths rate

age pop deaths rate

1. <15 57900000 103062 .00178

2. 15-24 35441000 45261 .00128

3. 25-34 24907000 39193 .00157

4. 35-44 23088000 72617 .00315

5. 45-54 23220000 169517 .0073

6. 55-64 18590000 308373 .01659

7. 65-74 12436000 445531 .03583

8. 75+ 7630000 736758 .09656

Note that the standard population contains for each age stratum the total number of individuals (pop) and both the age-specific
mortality rate (rate) and the number of deaths. It is not necessary that the standard population contain all three. If you only
have the age-specific mortality rate you can use the rate(ratevarp crudevarp) or rate(ratevarp #) options, where crudevarp
refers to the variable containing the total population’s crude death rate or # is the total population’s crude death rate.

Now let’s look at the states data (study population).

. use Kahn

. list

state age pop death

1. California <15 5524000 166285

2. California 15-24 3558000 166285

3. California 25-34 2677000 166285

4. California 35-44 2359000 166285

5. California 45-54 2330000 166285

6. California 55-64 1704000 166285

7. California 65-74 1105000 166285

8. California 75+ 696000 166285

9. Maine <15 286000 11051

10. Maine 15-24 168000 .

11. Maine 25-34 110000 .

12. Maine 35-44 109000 .

13. Maine 45-54 110000 .

14. Maine 55-64 94000 .

15. Maine 65-74 69000 .

16. Maine 75+ 46000 .

Note that for each state, the number of individuals in each stratum (age group) is contained in the variable pop. The death
variable is the total number of deaths observed in the state during the year. It must have the same value for all observations in
the group, such as for California, or it could be missing in all but one observation per group, such as in the case of Maine.

In terms of matching these two datasets, it is important that the strata variables have the same name in both datasets and
ideally the same levels. If a level is missing from either dataset, the level will not be included in the standardization.

With these data loaded in memory (use Kahn), we now execute the command. We will use the print option to obtain
the standard population’s summary table and since we have both the standard population’s age specific count and deaths, we
will specify the popvars(casevarp popvarp) option. Alternatively, we could specify the rate(rate 0.00945) option since we
know that 0.00945 is the US crude death rate for 1970.

(Continued on next page)
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. istdize death pop age using popkahn,by(state) pop(deaths pop) print

------Standard Population------

Stratum Rate

-------------------------------

<15 0.00178

15-24 0.00128

25-34 0.00157

35-44 0.00315

45-54 0.00730

55-64 0.01659

65-74 0.03583

75+ 0.09656

-------------------------------

Standard population's crude rate: 0.00945

----------------------------------------------------------

-> state= California

Indirect Standardization

Standard

Population Observed Cases

Stratum Rate Population Expected

----------------------------------------------------------

<15 0.0018 5524000 9832.72

15-24 0.0013 3558000 4543.85

25-34 0.0016 2677000 4212.46

35-44 0.0031 2359000 7419.59

45-54 0.0073 2330000 17010.10

55-64 0.0166 1704000 28266.14

65-74 0.0358 1105000 39587.63

75+ 0.0966 696000 67206.23

----------------------------------------------------------

Totals: 19953000 178078.73

Observed Cases: 166285

SMR (Obs/Exp): 0.93

SMR exact 95% Conf. Interval: [0.9293, 0.9383]

Crude Rate: 0.0083

Adjusted Rate: 0.0088

95% Conf. Interval: [0.0088, 0.0089]

----------------------------------------------------------

-> state= Maine

Indirect Standardization

Standard

Population Observed Cases

Stratum Rate Population Expected

----------------------------------------------------------

<15 0.0018 286000 509.08

15-24 0.0013 168000 214.55

25-34 0.0016 110000 173.09

35-44 0.0031 109000 342.83

45-54 0.0073 110000 803.05

55-64 0.0166 94000 1559.28

65-74 0.0358 69000 2471.99

75+ 0.0966 46000 4441.79

----------------------------------------------------------

Totals: 992000 10515.67

(Continued on next page)
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Observed Cases: 11051

SMR (Obs/Exp): 1.05

SMR exact 95% Conf. Interval: [1.0314, 1.0707]

Crude Rate: 0.0111

Adjusted Rate: 0.0099

95% Conf. Interval: [0.0097, 0.0101]

Summary of Study Populations (Rates):

Cases

state Observed Crude Adj_Rate Confidence Interval

--------------------------------------------------------------------------

California 166285 0.008334 0.008824 [0.008782, 0.008866]

Maine 11051 0.011140 0.009931 [0.009747, 0.010118]

Summary of Study Populations (SMR):

Cases Cases Exact

state Observed Expected SMR Confidence Interval

--------------------------------------------------------------------------

California 166285 178078.73 0.934 [0.929290, 0.938271]

Maine 11051 10515.67 1.051 [1.031405, 1.070687]
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snp14 A two-sample multivariate nonparametric test

Andrew M. Perkins, University of East Anglia, UK, a.perkins@uea.ac.uk

mv2snp performs the two-sample multivariate nonparametric test given by Leach (1991). The syntax of mv2snp is

mv2snp varlist, by(groupvar)
�
verbose

�
where varlist consists of at least 2 variable names.

Options

by(groupvar) is not optional; it specifies the variable identifying the groups.

verbose is optional. If included, the vector of test statistics (U ), variance-covariance matrix (V ) and inverse of matrix NV

will be reported (see below).

Methods and formulas

Data are ranked as a combined sample (as is carried-out for the univariate Mann–Whitney test) on each variable separately.
The test statistic U� is given as

U� = U 0(NV )�1U

U� is asymptotically distributed as �2
p where p is the number of variables. Significant values of U� indicate a difference between

the two groups.

U is the vector of test statistics consisting of

Ui =
Ri

(N + 1)
� n

2

for each variable, where Ri is the sum of ranks of the smaller group on the ith variable, n is the size of the smaller group,
and N is the size of the combined sample. U 0 is the transpose of U . The variance-covariance matrix V is defined as having
diagonal entries given by
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vii =
mn

12N(N + 1)

and off-diagonal entries given by

vij =
mn

N2(N � 1)(N + 1)2

� NX
t=1

RitRjt �
N(N + 1)2

4

�
where m and n are the sizes of the two groups, N is the size of the combined sample (m+ n) and

P
RitRjt is the sum of

the cross-products of each pair of rankings across the combined sample. The matrix (NV )�1 is the inverse of NV where N

is the combined sample size.

Example

The following example is that given by Leach (1991). Two psychological questionnaires (GHQ and IES) were given to two
groups of policemen following a disaster at a soccer stadium. The first group (H) of 12 police were involved with the disaster;
the second group (S) of 11 police were not involved.

The data are entered into Stata as three variables, ghq, ies and group:

. list ghq ies group

ghq ies group

1. 32 38 h

2. 34 17 h

3. 49 49 h

4. 33 45 h

5. 42 41 h

6. 49 49 h

7. 17 29 h

8. 48 43 h

9. 37 51 h

10. 48 48 h

11. 37 32 h

12. 22 51 h

13. 13 6 s

14. 13 14 s

15. 11 13 s

16. 21 36 s

17. 8 0 s

18. 24 23 s

19. 28 19 s

20. 9 0 s

21. 24 34 s

22. 22 7 s

23. 11 5 s

Running the test with the verbose option gives

. mv2snp ghq ies, by(group) verbose

Multi-variate non-parametric test (Leach, 1991)

Vector of test statistics, U

-2.39583

-2.41667

Variance-Covariance matrix, V

0.01993 0.01561

0.01561 0.01993

Inverse of matrix NV

5.64142 -4.41781

-4.41781 5.64142

-------------------------------------------------------------------------------

Test on variables: ghq ies

ghq - GHQ Results

ies - IES Results

Grouping variable: group - Grouping Variable

Size of smaller group = 11 Number of variables = 2

Size of larger group = 12 U* = 14.17

Combined sample size = 23 P = 0.00084

-------------------------------------------------------------------------------
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Omitting the verbose option excludes output of vector U and matrices V and (NV )�1.

Saved results

mv2snp saves the following results:

S 1 U�

S 2 Combined sample size
S 3 Size of smaller sample
S 4 Number of variables

Remarks

The grouping variable may be alpha or numeric and need not be named group. The data do not need to be sorted before
applying mv2snp. When ranking the data, mv2snp does not exclude data values of zero. mv2snp does, however, perform casewise
deletion for subjects with missing data because the nature of a multivariate test examines the correlation between variables; thus
including data against which no correlation can be made will lead to erroneous results.

Reference
Leach, C. 1991. Nonparametric methods for complex data sets. In New Developments in Statistics for Psychology and the Social Sciences, Vol. 2.

ed. P. Lovie and A. D. Lovie. British Psychological Society and Routledge.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

Guidelines for authors

The Stata Technical Bulletin (STB) is a journal that is intended to provide a forum for Stata users of all disciplines and
levels of sophistication. The STB contains articles written by StataCorp, Stata users, and others.

Articles include new Stata commands (ado-files), programming tutorials, illustrations of data analysis techniques, discus-
sions on teaching statistics, debates on appropriate statistical techniques, reports on other programs, and interesting datasets,
announcements, questions, and suggestions.

A submission to the STB consists of

1. An insert (article) describing the purpose of the submission. The STB is produced using plain TEX so submissions using
TEX (or LATEX) are the easiest for the editor to handle, but any word processor is appropriate. If you are not using TEX and
your insert contains a significant amount of mathematics, please FAX (409–845–3144) a copy of the insert so we can see
the intended appearance of the text.

2. Any ado-files, .exe files, or other software that accompanies the submission.

3. A help file for each ado-file included in the submission. See any recent STB diskette for the structure a help file. If you
have questions, fill in as much of the information as possible and we will take care of the details.

4. A do-file that replicates the examples in your text. Also include the datasets used in the example. This allows us to verify
that the software works as described and allows users to replicate the examples as a way of learning how to use the software.

5. Files containing the graphs to be included in the insert. If you have used STAGE to edit the graphs in your submission, be
sure to include the .gph files. Do not add titles (e.g., “Figure 1: ...”) to your graphs as we will have to strip them off.

The easiest way to submit an insert to the STB is to first create a single “archive file” (either a .zip file or a compressed
.tar file) containing all of the files associated with the submission, and then email it to the editor at stb@stata.com either
by first using uuencode if you are working on a Unix platform or by attaching it to an email message if your mailer allows
the sending of attachments. In Unix, for example, to email the current directory and all of its subdirectories:

tar -cf - . | compress | uuencode xyzz.tar.Z > whatever

mail stb@stata.com < whatever
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