
STATA September 1997

TECHNICAL STB-39

BULLETIN
A publication to promote communication among Stata users

Editor Associate Editors

H. Joseph Newton Francis X. Diebold, University of Pennsylvania
Department of Statistics Joanne M. Garrett, University of North Carolina
Texas A & M University Marcello Pagano, Harvard School of Public Health
College Station, Texas 77843 James L. Powell, UC Berkeley and Princeton University
409-845-3142 J. Patrick Royston, Royal Postgraduate Medical School
409-845-3144 FAX
stb@stata.com EMAIL

Subscriptions are available from Stata Corporation, email stata@stata.com, telephone 979-696-4600 or 800-STATAPC,
fax 979-696-4601. Current subscription prices are posted at www.stata.com/bookstore/stb.html.

Previous Issues are available individually from StataCorp. See www.stata.com/bookstore/stbj.html for details.

Submissions to the STB, including submissions to the supporting files (programs, datasets, and help files), are on a nonex-
clusive, free-use basis. In particular, the author grants to StataCorp the nonexclusive right to copyright and distribute the
material in accordance with the Copyright Statement below. The author also grants to StataCorp the right to freely use the
ideas, including communication of the ideas to other parties, even if the material is never published in the STB. Submissions
should be addressed to the Editor. Submission guidelines can be obtained from either the editor or StataCorp.

Copyright Statement. The Stata Technical Bulletin (STB) and the contents of the supporting files (programs, datasets,
and help files) are copyright c by StataCorp. The contents of the supporting files (programs, datasets, and help files), may be
copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution
to both (1) the author and (2) the STB.

The insertions appearing in the STB may be copied or reproduced as printed copies, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the STB. Written permission must be obtained from Stata
Corporation if you wish to make electronic copies of the insertions.

Users of any of the software, ideas, data, or other materials published in the STB or the supporting files understand that such use
is made without warranty of any kind, either by the STB, the author, or Stata Corporation. In particular, there is no warranty of
fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose
of the STB is to promote free communication among Stata users.

The Stata Technical Bulletin (ISSN 1097-8879) is published six times per year by Stata Corporation. Stata is a registered
trademark of Stata Corporation.

Contents of this issue page

stata47. lookup now indexes on-line FAQs 2
stata48. Updated reshape 4

dm49. Some new matrix commands 17
ip19. Using expressions in Stata commands 20

sbe17. Discrete time proportional hazards regression 22
sg72. Newey–West standard errors for probit, logit, and poisson models 32

2 Stata Technical Bulletin STB-39

stata47 lookup now indexes on-line FAQs

William Gould, Stata Corporation, wgould@stata.com

There are currently about 100 FAQs totaling 300 pages available on Stata’s web site and that is growing. FAQ stands for Frequently
Asked Question and it is web jargon for pages recording answers to popular questions. As you can calculate for yourself from the
statistics, the average FAQ runs about 3 pages. To access the FAQs,

1. point your browser to http://www.stata.com;

2. click on User Support;

3. click on FAQs.

A FAQ is a document that opens with a question and then provides the answer. For instance, one of the FAQs on Stata’s web site appears
as

What does “completely determined” mean in my logistic regression output?

Title: Interpreting “completely determined” when running logistic
Author: William Sribney, Stata Corporation
Date: July 1996

There are two causes for messages like

Note: 4 failures and 0 successes completely determined

after the commands logistic, logit, and probit. Let us deal with the most
unlikely case first. This case occurs when : : :

This particular FAQ runs about 7 pages.

Finding the FAQ that interests you can be a daunting task. On the web site, we currently categorize FAQs according to

Questions about Windows
Installation
Memory allocation
Crashes
Printing
Miscellaneous

Questions about Macintosh
Installation
Memory allocation
Crashes
Miscellaneous

Questions about Unix

Questions about Statistics
Cross-sectional time-series (panel) data
Logistic and probit regression
Survival analysis
Survey and robust estimators
Estimation commands
Tests
Probability distributions
Other commands

Questions about Programming

Questions about Data Management
Reading and inputting data
Combining datasets
Memory usage
Data manipulation
Data reporting
Dates
Other
FAQs concerning releases before Stata 5.0

To make finding the FAQs easier, we have updated the lookup database to include them.

Stata Technical Bulletin 3

lookup is the Stata command that indexes the Stata on-line help, the printed documentation, and now, the FAQs. Windows and
Macintosh users can also access lookup by pulling down Help from the top menu bar.

. lookup completely determined

FAQ Interpreting "completely determined" when running logistic

. W. Sribney

7/96 What does completely determined mean in my logistic

regression output?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

The referenced URL http://www.stata.com/support/faqs/stat/ will take you directly to the statistics FAQ page; alternatively you could
go to http://www.stata.com, click on User Support, click on FAQs, and click on Statistics. However you get to the page, from there
you click on Logistic and probit regression and then you scroll down the sublist until you find the completely-determined question.

It is unlikely that you would ever think to lookup the phrase “completely determined” or that we will remember to index such a
phrase, but if you type lookup logistic or lookup logit, you will find this FAQ.

Listing only the FAQs

Those who use Stata for Windows or Macintosh will find pulling down Help from the top menu bar the easier way to access
lookup. A major advantage is that they can then scroll through the list.

No matter which operating system you use, however, you can use the lookup command and restrict what is listed. Typing

. lookup logistic

(references to 11 manual entries omitted)

(references to 11 STB inserts omitted)

(references to 8 FAQs omitted)

(or pulling down Help and typing logistic) produces a list of 11 + 11 + 8 = 30 references. If you want just the FAQs, you can
include the class(faq) option. Here are the eight FAQs relevant to logistic regression:

. lookup logistic, class(faq)

FAQ Interpreting the cut points in ordered probit and logit

. W. Gould

4/97 In ordered probit and logit, what are the cut points?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ Interpreting "outcome does not vary" when running logistic

. P. Lin

11/96 Why do I get the message, "outcome does not vary" when

I perform a logistic or logit regression?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ Conditional logit model and clogit

. W. Sribney

3/97 I am running clogit and get the message "Note: multiple

positive outcomes within groups encountered." Is this

something that I should worry about or is this a normal

message?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ Comparison of the nested logit and the constrained multinomial models

. W. Gould

8/95 Is there a nested logit program for Stata?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ Interpreting "completely determined" when running logistic

. W. Sribney

7/96 What does completely determined mean in my logistic

regression output?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ A terminology problem: odds ratio versus odds

. W. Gould and J. Hardin

3/96 Why does the manual claim that the odds ratio is constant

in a logistic regression?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

4 Stata Technical Bulletin STB-39

FAQ Convergence of maximum-likelihood estimators

. W. Gould

11/96 Why does my mlogit take so long to converge?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Logistic and probit regressions

FAQ The appropriate command for matched case-control data

. W. Sribney

3/96 Can I do n:1 matching with the mcc command?

On-line FAQ at http://www.stata.com/support/faqs/stat/

Click on Other commands

If you wanted to obtain just the relevant STB inserts, you could type
. lookup logistic, class(stb)

STB-36 sbe14 . OR's & ci's for logistic reg. models with effect modification

(help effmod if installed) J. Garrett

3/97 STB Reprints Vol 6, pages 104--114

calculates odds ratios and confidence intervals for logistic

regression models with significant interaction terms

STB-28 sbe12 . . Using lfit and lroc to evaluate mortality prediction models

. J. M. Tilford, P. K. Roberson, and D. H. Fiser

11/95 STB Reprints Vol 5, pages 77--81

discussion of how the new lfit and lroc commands (see crc41)

can be used to evaluate mortality prediction models

STB-35 sg63 . Logistic regression: standardized coef. & partial correlations

(help lstand if installed) J. Hilbe

1/97 STB Reprints Vol 6, pages 162--163

command for use after logistic; displays predictor, its coefficient,

odds ratio, standardized coefficient, partial correlation, and p-value

STB-30 sg50 Graphical assessment of linear trend

(help lintrend if installed) J. M. Garrett

3/96 STB Reprints Vol 5, pages 152--160

graphically examines the relationship between the log odds of

a binary outcome by categories of an ordinal or interval

independent variable

STB-33 sg42.1 Extensions to the regpred command

(help regpred2 if installed) M. Over

9/96 STB Reprints Vol 6, pages 117--121

adds four additional options to regpred including the

capability to perform instrumental variable estimation

STB-26 sg42 . . Plotting predicted values from linear & logistic regr. models

(help regpred and logpred if installed) J. Garrett

7/95 STB Reprints Vol 5, pages 111--116

calculate and plot predicted values and 95 percent confidence

intervals of the predictions for one predictor holding constant

the other predictors

(remaining output omitted)

Actually, you can type lookup logistic, class(stb) or you can type lookup logistic, stb; typing just stb is a synonym for
class(stb). For the new FAQs, however, you must type class(faq) if you wish to restrict the listing.

Updates

When you install the official updates from the STB, the lookup database is also updated. All STB inserts up to and including the
previous issue are indexed along with all current FAQs.

stata48 Updated reshape

William Gould, Stata Corporation, wgould@stata.com

Below is all-new documentation on the all-new reshape command which has all-new syntax. Before you panic, we hasten to
add that the new reshape command understands the old command’s syntax without you specifying version numbers or anything else.
It just works, both the old way and the new.

The new reshape command has a number of improvements:

1. The syntax is easier to specify and you need specify less.

2. The syntax allows variable names to be suffixed with numbers—as did the old—and it allows numbers to appear in the middle
of variable names, such as inc80m and inc81m. It allows groups to be indicated by characters as well as numbers, such as incm
and incf for income of males and females or even minc and finc.

Stata Technical Bulletin 5

3. The command provides better diagnostics when there are problems—including a new reshape error command for use when
the data have problems. reshape error lists the problem observations.

4. The command checks assumptions about the data more carefully so that if there are problems, you are told ahead of time rather
than after you obtain an unexpected result.

5. The code is structured so that the conversion process requires less free memory.

6. The problem reshape had with allowing only 10 constant-within-group variables is fixed.

7. All the improvements Weesie (1997) incorporated into his reshape2 command have been included in the new reshape.

Basic syntax

reshape wide varnames, i(varlist)
�
j(varname

�
values

�
) other options

�
reshape long varnames, i(varlist)

�
j(varname

�
values

�
) other options

�
reshape wide

reshape long

reshape error

where values is #
�
-#
� �

#
�
-#
�
: : :

�
and other options is string atwl(chars) and both are seldom specified.

Advanced syntax

reshape i varlist

reshape j varname
�
#
�
-#
� �

#
�
-#
�
: : :

�� �
, string

�
reshape xij fvarnames

�
, atwl(chars)

�
reshape xi

�
varlist

�
reshape query

reshape

reshape wide

reshape long

reshape error

reshape clear

where fvarnames are either varnames, varnames with @ characters, or a mix of the two. The @ character denotes where the # (j) suffix
appears.

Description of basic syntax

Think of the data as a collection of observations Xij . One such collection might be:

(wide form) (long form)

-i- ------- X_ij -------- -i- -j- -X_ij-

id sex inc80 inc81 inc82 id year sex inc

------------------------------- ----------------------

1 0 5000 5500 6000 1 80 0 5000

2 1 2000 2200 3300 1 81 0 5500

3 0 3000 2000 1000 1 82 0 6000

2 80 1 2000

2 81 1 2200

2 82 1 3300

3 80 0 3000

3 81 0 2000

3 82 0 1000

reshape converts data from one form to the other:

. reshape long inc, i(id) j(year) (goes from left-form to right)

. reshape wide inc, i(id) j(year) (goes from right-form to left)

6 Stata Technical Bulletin STB-39

In this example one observation is, at least logically speaking,

+-------- in the wide form -------+ +------ in the long ------+

| . list if id==1 | | . list if id==1 |

| | | |

| id sex inc80 inc81 inc82 | OR | id sex year inc |

| 1. 1 0 5000 5500 6000 | | 1. 1 0 80 5000 |

+ --------------------------------+ | 2. 1 0 81 5500 |

| 3. 1 0 82 6000 |

+ ------------------------+

and you want to think of this single “observation” as Xij .

The i variable denotes the logical observation and is often called the group identifier. i is variable id in our data.

j denotes the subobservation and so is often called the subgroup or within-group identifier. j is year in our data, or at least,
variable year when the data is in the long form. There is no j variable in the wide form. Instead, the inc variable is suffixed with
the values of j, forming inc80, inc81, and inc82.

That leaves only the variable sex, which we did not specify when we typed

. reshape long inc, i(id) j(year)

or

. reshape wide inc, i(id) j(year)

Since sex is not specified, sex is assumed to be constant within i and reshape verifies that assumption before converting the data.

Here is an example with two Xij variables with the data in wide form:

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0

2. 2 1 2000 2200 3300 1 0 0

3. 3 0 3000 2000 1000 0 0 1

To convert this into the long form, we type

. reshape long inc ue, i(id) j(year)

(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9

Number of variables 8 -> 5

j variable (3 values) -> year

xij variables:

inc80 inc81 inc82 -> inc

ue80 ue81 ue82 -> ue

Note that there is no variable named year in our original, wide dataset. year will be a new variable in our long dataset. After
conversion, we have

. list

id year sex inc ue

1. 1 80 0 5000 0

2. 1 81 0 5500 1

3. 1 82 0 6000 0

4. 2 80 1 2000 1

5. 2 81 1 2200 0

6. 2 82 1 3300 0

7. 3 80 0 3000 0

8. 3 81 0 2000 0

9. 3 82 0 1000 1

Stata Technical Bulletin 7

Similarly, if we took this dataset and typed

. reshape wide inc ue, i(id) j(year)

(note: j = 80 81 82)

Data wide -> long

Number of obs. 9 -> 3

Number of variables 5 -> 8

j variable (3 values) year -> (dropped)

xij variables:

inc -> inc80 inc81 inc82

ue -> ue80 ue81 ue82

we would be right back to our original data,

. list

id inc80 ue80 inc81 ue81 inc82 ue82 sex

1. 1 5000 0 5500 1 6000 0 0

2. 2 2000 1 2200 0 3300 0 1

3. 3 3000 0 2000 0 1000 1 0

except for variable order.

Converting from wide to long creates the j (year) variable. Converting from long to wide drops the j (year) variable.

Mistakes

The following wide data contain a mistake:

. list

id sex inc80 inc81 inc82

1. 1 0 5000 5500 6000

2. 2 1 2000 2200 3300

3. 3 0 3000 2000 1000

4. 2 0 2400 2500 2400

. reshape long inc, i(id) j(year)

(note: j = 80 81 82)

i=id does not uniquely identify the observations;

there are multiple observations with the same value of id.

Type "reshape error" for a listing of the problem observations.

r(9);

The i variable must be unique when the data are in the wide form; we said i(id) yet we have two observations for id = 2. Is person
2 a male or female?

Spotting the error in this small dataset is easy. Regardless of the size of the data, reshape error will assist us in spotting the
problem. reshape error will provide assistance whenever the original error message says “type reshape error for a listing of the
problem observations”.

. reshape error

(note: j = 80 81 82)

i (id) indicates the top-level grouping such as subject id.

The data are currently in the wide form; there should be a single

observation per i.

2 out of 4 observations have duplicate i values:

id

2. 2

3. 2

(data now sorted by id)

It is not a mistake when the i variable is repeated in long data, but the following long data have a similar kind of mistake:

. list

8 Stata Technical Bulletin STB-39

id year sex inc

1. 1 80 0 5000

2. 1 81 0 5500

3. 1 82 0 6000

4. 2 80 1 2000

5. 2 81 1 2200

6. 2 82 1 3300

7. 3 80 0 3000

8. 3 81 0 2000

9. 3 82 0 1000

10. 3 82 0 1000

. reshape wide inc, i(id) j(year)

(note: j = 80 81 82)

year not unique within id;

there are multiple observations at the same year within id.

Type "reshape error" for a listing of the problem observations.

r(9);

In the long form, i(id) does not have to be unique, but j(year) must be unique within i(); otherwise, what is the value of inc in
1981 for id = 1? As before, reshape error will assist in finding the problem:

. reshape error

(note: j = 80 81 82)

i (id) indicates the top-level grouping such as subject id.

j (year) indicates the subgrouping such as time.

The data are in the long form; j should be unique within i.

There are multiple observations on the same year within id.

The following 2 out of 10 observations have repeated year values:

id year

9. 3 82

10. 3 82

(data now sorted by id year)

Finally, consider the following (long) data which has no mistake in it:

. list

id year sex inc ue

1. 1 80 0 5000 0

2. 1 81 0 5500 1

3. 1 82 0 6000 0

4. 2 80 1 2000 1

5. 2 81 1 2200 0

6. 2 82 1 3300 0

7. 3 80 0 3000 0

8. 3 81 0 2000 0

9. 3 82 0 1000 1

What if we forget to specify ue, a variable that varies within i ?

. reshape wide inc, i(id) j(year)

(note: j = 80 81 82)

ue not constant within id

Type "reshape error" for a listing of the problem observations.

r(9);

In this case reshape observed that ue was not constant within i and so could not restructure the data so that there were single ob-
servations on i. Of course, we should have typed reshape wide inc ue, i(id) j(year). We could type reshape error if the
problem were not obvious.

In summary, there are three cases in which reshape will refuse to convert the data:

1. the data are in the wide form and i is not unique;

2. the data are in the long form and j is not unique within i;

3. the data are in the long form and an unmentioned variable is not constant within i.

Stata Technical Bulletin 9

Other mistakes

There are obviously other mistakes one might make but in such situations reshape will probably convert the data and produce
a surprising result because there is no way of knowing this is not what you intend.

For instance, consider the following wide data where we forget to mention that variable ue varies within id:

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0

2. 2 1 2000 2200 3300 1 0 0

3. 3 0 3000 2000 1000 0 0 1

. reshape long inc, i(id) j(year)

(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9

Number of variables 8 -> 7

j variable (3 values) -> year

xij variables:

inc80 inc81 inc82 -> inc

reshape does not complain but here is the result:

. list

id year sex ue80 ue81 ue82 inc

1. 1 80 0 0 1 0 5000

2. 1 81 0 0 1 0 5500

3. 1 82 0 0 1 0 6000

4. 2 80 1 1 0 0 2000

5. 2 81 1 1 0 0 2200

6. 2 82 1 1 0 0 3300

7. 3 80 0 0 0 1 3000

8. 3 81 0 0 0 1 2000

9. 3 82 0 0 0 1 1000

We did not state that ue varied within i and so the variables ue80, ue81, and ue82 were left as-is. There is no real problem here
because no information has been lost. In fact, this may be the result we wanted.

Probably, however, we simply forgot to include ue among the Xij variables. If you obtain an unanticipated result here is how
to undo it:

If you typed ‘reshape long : : :’ to produce it, type reshape wide (without arguments) to undo it.

If you typed ‘reshape wide : : :’ to produce it, type reshape long (without arguments) to undo it.

So we can type reshape wide to get back to our original data and then type the reshape long command we intended: reshape
long inc ue, i(id) j(year).

reshape long and reshape wide without arguments

Whenever you type a reshape long or reshape wide command with arguments, reshape remembers it. Thus you might

. reshape long inc ue, i(id) j(year)

and work with the data like that. You could then type

. reshape wide

to convert it back to the wide form. You might do some more work. You could type

. reshape long

to convert it back to the long form. If you save the data, you can even continue using reshape wide and reshape long without
arguments the next day.

10 Stata Technical Bulletin STB-39

Be a little careful, however. If you create new Xij variables, you must tell reshape about them by typing out the full reshape
command, although no real damage will be done if you forget. If you are converting from long to wide, reshape itself will catch
your error and refuse to do the conversion. If you are converting from wide to long, reshape will convert the data, but the result will
be surprising (remember what happened when we forget to mention variable ue and ended up with ue80, ue81, and ue82 in our long
data). You can ‘reshape long’ to undo it and then try again.

Missing variables

When converting data from the wide to the long forms, reshape does not demand that all the variables exist. Missing variables
are treated like variables with missing observations. For instance, consider

. list

id sex inc80 inc81 inc82 ue80 ue82

1. 1 0 5000 5500 6000 0 0

2. 2 1 2000 2200 3300 1 0

3. 3 0 3000 2000 1000 0 1

Note that variable ue81 is missing. We can still type

. reshape long inc ue, i(id) j(year)

(note: j = 80 81 82)

(note: ue81 not found)

Data wide -> long

Number of obs. 3 -> 9

Number of variables 7 -> 5

j variable (3 values) -> year

xij variables:

inc80 inc81 inc82 -> inc

ue80 ue81 ue82 -> ue

The result is

. list, nodisplay

id year sex inc ue

1. 1 80 0 5000 0

2. 1 81 0 5500 .

3. 1 82 0 6000 0

4. 2 80 1 2000 1

5. 2 81 1 2200 .

6. 2 82 1 3300 0

7. 3 80 0 3000 0

8. 3 81 0 2000 .

9. 3 82 0 1000 1

Were we to reshape these data back to the wide form by typing reshape wide inc ue, i(id) j(year), the variable ue81 would
be created and it would contain all missing values.

Advanced issues with basic syntax: i()

The syntax is
reshape : : :, i(i variable) : : : or reshape : : :, i(i variables) : : :

Typically i is one variable—such as subject id—but it could be multiple variables such as hospital id and hospital’s patient id.

Examples include

reshape : : :, i(id)

reshape : : :, i(hid pid)

Advanced issues with basic syntax: j()

The syntax is

reshape : : :, : : : j(j variable) : : : or reshape : : :, : : : j(j variable j values) : : :

Stata Technical Bulletin 11

The second syntax defines the j variable and its values. When you leave the values unspecified, reshape works them out for itself.

reshape never makes a mistake when the data is in long form—when you type reshape wide. The values can easily be ob-
tained by tabulating the existing j variable.

reshape can make a mistake when your data is in the wide form—when you type reshape long—if you have named your
variables poorly. Pretend you have the variables inc80, inc81, and inc82, recording income in each of the indicated years, and you
have a variable named inc2, which is not income but when the area was reincorporated. You type

. reshape long inc, i(id) j(year)

reshape would see the variables inc2, inc80, inc81, and inc82 and decide that there are four groups: j = 2, 80, 81, and 82.
The best way to address such problems is to name your variables appropriately. The date of reincorporation would be better named
something other than inc followed by a number; reinc would be a good name.

Alternatively, you can keep the name and specify the j values. To perform the reshape, you would type

. reshape long inc, i(id) j(year 80-82)

or

. reshape long inc, i(id) j(year 80 81 82)

The dash notation for ranges can be mixed with individual numbers. reshape would understand 80 82-87 89 91-95.

At the other extreme, you can omit the j() option altogether. If you do, reshape longwill name the j variable j and reshape
wide will assume the variable is named j.

Advanced issues with basic syntax: X ij

When specifying the variable names you may include @ characters to indicate where the numbers go. For instance, in the fol-
lowing data

. list

id sex inc80r inc81r inc82r ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0

2. 2 1 2000 2200 3300 1 0 0

3. 3 0 3000 2000 1000 0 0 1

you would type

. reshape long inc@r ue, i(id) j(year)

(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9

Number of variables 8 -> 5

j variable (3 values) -> year

xij variables:

inc80r inc81r inc82r -> incr

ue80 ue81 ue82 -> ue

At most one @ character may appear in each name. If no @ character appears, results are as if the @ character appeared at the end
of the name. So equivalent to the above is

. reshape long inc@r ue@, i(id) j(year)

Either way, the result of the reshape long will be

. list

id year sex incr ue

1. 1 80 0 5000 0

2. 1 81 0 5500 1

3. 1 82 0 6000 0

(output omitted)
9. 3 82 0 1000 1

12 Stata Technical Bulletin STB-39

That is, inc@r specifies variables named inc#r in the wide format and incr in the long.

The @ notation may similarly be used for converting long to wide datasets:

. reshape wide inc@r ue, i(id) j(year)

(output omitted)

Advanced issues with basic syntax: the atwl() option

Option atwl() is for use when @ characters are also specified:

reshape varnames with @, : : : atwl(chars)

atwl() stands for at-when-long. When you specify a name such as inc@r or ue@ in the long form, the name becomes incr and ue;
the @ character is changed into nothing. atwl() lets you change it into something.

If you specify atwl(X), the long-form names would become incXr and ueX. If you specified atwl(yr), the long-form names
would become incyrr and ueyr.

atwl() is seldom specified.

Advanced issues with basic syntax: string identifiers for j()

The string option allows j to take on string values:

reshape : : :, : : : string

For instance, consider the following wide data on husbands and wives:

. list

id kids incm incf

1. 101 0 5000 5500

2. 102 2 2000 2200

3. 103 1 3000 2000

In this data, incm is the income of the man and incf the income of the woman. This data can be reshaped into separate observations
for males and females by typing

. reshape long inc, i(id) j(sex) string

(note: j = f m)

Data wide -> long

Number of obs. 3 -> 6

Number of variables 4 -> 4

j variable (2 values) -> sex

xij variables:

incf incm -> inc

The string option specifies that j will take on nonnumeric values. The result is

. list

id sex kids inc

1. 101 f 0 5500

2. 101 m 0 5000

3. 102 f 2 2200

4. 102 m 2 2000

5. 103 f 1 2000

6. 103 m 1 3000

sex will be a string variable. Similarly, these data can be converted from long to wide by typing

Stata Technical Bulletin 13

. reshape wide inc, i(id) j(sex) string

(note: j = f m)

Data wide -> long

Number of obs. 6 -> 3

Number of variables 4 -> 4

j variable (2 values) sex -> (dropped)

xij variables:

inc -> incf incm

Strings are not limited to being single characters or even of the same length. Had the original data been

. list

id kids incmale incfem

1. 101 0 5000 5500

2. 102 2 2000 2200

3. 103 1 3000 2000

then reshape long inc, i(id) j(sex) string would have resulted in

. list

id sex kids inc

1. 101 fem 0 5500

2. 101 male 0 5000

3. 102 fem 2 2200

4. 102 male 2 2000

5. 103 fem 1 2000

6. 103 male 1 3000

Where the string identifier appears may be specified using the @ notation. In the following wide data, the m and f appear as a
prefix rather than a suffix:

. list

id kids minc finc

1. 101 0 5000 5500

2. 102 2 2000 2200

3. 103 1 3000 2000

The reshape command is

. reshape long @inc, i(id) j(sex) string

(output omitted)

The resulting variable in the long format will be named inc.

Just as with numbers, strings may be placed in the middle. If the variables are named incMome and incFome, the reshape

command would be

. reshape long inc@ome, i(id) j(sex) string

(output omitted)

Be careful with string identifiers because it is easy to be surprised by the result. Consider a person with wide data having variables
named incm, incf, uem, uef, and agem, agef. To make the data long, the person types

. reshape long inc ue age, i(id) j(sex) string

Along with these variables, the person innocently has the variable agenda. reshape will decide the sexes are m, f, and nda. This
would not happen without the string option if the variables were named inc0, inc1, ue0, ue1, and age0, age1 even with variable
agenda present in the data.

Advanced issues with basic syntax: second-level nesting

You have data from a household survey of the income of husbands and wives. There are four ways these data might be organized.

14 Stata Technical Bulletin STB-39

They might be organized in the long-long form

hid sex year inc

1. 107 m 90 4500

2. 107 f 90 3200

3. 107 m 91 4600

4. 107 f 91 4700

or in the long-year wide-sex form

hid year finc minc

1. 107 90 3200 4500

2. 107 91 4700 4600

or in the wide-year long-sex form

hid sex inc90 inc91

1. 107 f 3200 4700

2. 107 m 4500 4600

or the wide-wide form

hid finc90 minc90 finc91 minc91

1. 107 3200 4500 4700 4600

reshape can convert any of these forms to any other. Converting all the way from the long-long form to the wide-wide form (or from
the wide-wide form to the long-long) requires two reshape commands.

Starting in the wide-wide form, we can convert to (say) the long-year wide-sex form by typing

. reshape wide @inc, i(hid year) j(sex) string

This in turn can be converted to the wide-wide form by typing

. reshape wide minc finc, i(hid) j(year)

We can go back from the wide-wide to the long-long by repeating the two steps in reverse order:

. reshape long minc finc, i(hid) j(year)

. reshape long @inc, i(hid year) j(sex) string

Pairs of reshape commands can result in remarkable dataset transformations. For instance, you can convert

gid year rs1 rs2 rs3 sex

1. 26 90 57 28 30 m

2. 26 91 52 33 32 m

into

gid visit rs90 rs91 sex

1. 26 1 57 52 m

2. 26 2 28 33 m

3. 26 3 30 32 m

by typing

. reshape long rs, id(gid year) j(visit)

. reshape wide rs, id(gid visit) j(year)

Description of advanced syntax

The advanced syntax is simply a different way of specifying the reshape command and it has one seldom-used feature providing
a little extra control. Rather than typing a single reshape command to describe the data and perform the conversion, such as

Stata Technical Bulletin 15

. reshape long inc, i(id) j(year)

you type a sequence of reshape commands. The initial commands describe the data and the last performs the conversion:

. reshape i id

. reshape j year

. reshape xij inc

. reshape long

reshape i corresponds to i() in the basic syntax.

reshape j corresponds to j() in the basic syntax.

reshape xij corresponds to the variables specified in the basic syntax.

In addition, there is one more specification which has no counterpart in the basic syntax:

reshape xi varlist

In the basic syntax, all unspecified variables are assumed to be constant within i. The advanced syntax works the same way unless
you specify the reshape xi command. reshape xi names the constant-within-i variables. If you specify reshape xi, then any
variables that are not explicitly specified are dropped from the data during the conversion.

As a practical matter, it would probably be better if you explicitly dropped the unwanted variables before conversion. For in-
stance, imagine the data have variables inc80, inc81, inc82, sex, age, and age2 and that you no longer want the age2 variable.
You could specify

. reshape xi sex age

or you could

. drop age2

and leave reshape xi unspecified. reshape xi does have one minor advantage: It saves reshape from going to the work of deter-
mining which variables are unspecified. This saves a relatively small amount of computer time.

Another advanced-syntax feature is reshape query—equivalent to typing reshape by itself. reshape query presents a report
on what has been defined:

. reshape

(data is wide)

+---+

| Xij | Command/contents |

+------------------------------+--+

| Subscript i,j definitions: | |

| group id variable(s) | reshape i hid |

| within-group variable | reshape j year |

| and its range | |

| | |

| Variable X definitions: | |

| varying within group | reshape xij minc finc |

| constant within group (opt) | reshape xi <varlist> |

+---+

Optionally type "reshape xi" to define variables that are constant within i.

Type "reshape long" to convert the data to long form.

reshape i, reshape j, reshape xij, and reshape xi specifications may be given in any order and may be regiven to change or
correct what has been specified.

Finally, reshape clear clears the definitions. Remember that reshape definitions are stored with the dataset when you save
it. reshape clear provides a way to erase the definitions if you do not want this.

The basic syntax of reshape is implemented in terms of the advanced syntax. That means you can mix basic and advanced
syntaxes.

16 Stata Technical Bulletin STB-39

Comparison with prior version of reshape

The syntax of the prior version of reshape was

reshape cons varname
�
varname : : :

�
reshape groups groupvar #

�
-#
� �

#
�
-#
�
: : :

�
reshape vars varname

�
varname : : :

�
reshape query

reshape wide

reshape long

You may continue to use the old syntax; the new reshape understands that. The new syntax is, however, better.

Here is the mapping between old and new syntax:

old syntax new syntax

reshape cons : : : reshape i : : :

reshape groups : : : reshape j : : :

reshape vars : : : reshape xij : : :

reshape query reshape query

reshape wide reshape wide

reshape long reshape long

In the old reshape cons command you specified the identification variables and any variables that were constant within group.
The new way to do that is

reshape i identification variables

reshape xi constant within group variables

and then, it would better if you left the constant within group variables unspecified because the new reshape can figure that out for
itself. If you specify the list, you are likely to forget a variable or two.

In addition, the old reshape cons command was limited to 10 variables. The new reshape i is also limited to 10 variables,
but the constraint does not matter because it will certainly not take that many variables to identify the groups and the constant-within-
group variables are specified either with the reshape xi command or left unspecified. There is now no limit as to the number of
constant-within-group variables (explicitly specified or implied).

The new reshape uses less memory and is slightly faster once it gets going; it spends more time thinking about what it is going
to do, however. The new reshape has better error checking—especially for data problems such as nonunique id variables that might
otherwise go undiscovered. All those advantages accrue whether you use the old or new syntax.

Acknowledgment

We would like to thank Jeroen Weesie of Utrecht University for his reshape2 command (Weesie 1997), the ideas of which were
incorporated into this version of reshape.

Saved results

So that reshape long and reshape wide can be given without arguments, reshape stores the following characteristics with
the data:

dta[ReS ver] v.1 if old-syntax commands were used
v.2 if new-syntax commands were used

dta[ReS i] i variable name(s)
dta[ReS j] j variable name
dta[ReS jv] j values if specified
dta[ReS Xij] Xij variable name(s)
dta[ReS Xi] Xi variable name(s) if specified
dta[ReS atwl] atwl() value if specified
dta[ReS str] 1 if option string specified; otherwise 0.

References
Weesie, J. 1997. dm48: An enhancement of reshape. Stata Technical Bulletin 38: 2–4.

Stata Technical Bulletin 17

dm49 Some new matrix commands

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert describes a collection of new matrix commands for Stata. Most of these commands operate on “explicit” Stata matrix
objects. In my work, I frequently encounter situations in which I want to know some “linear algebra” property of a collection of
variables. For example, “What is the matrix rank of these variables?” We might also ask “How many linear relationships exist between
these variables and what are they?” Forming a matrix with mkmat is laborious and only possible with small datasets. Thus, I wrote
additional “interface” programs that operate on “implicit matrices” formed by variables and row selection with standard if and in

syntax.

In this insert, I do not seek to explicate linear algebra concepts, numerical linear algebra, and the applications of linear algebra
in statistics. Rather, the reader should refer to the references.

Finally, I stayed away from implementing one of the most curious omissions in Stata: A linear equation solver. Stata’s high-level
interpreted language is simply too slow.

Contents

The matrix-oriented programs provided with this insert include (see help for matfunc for interactive help):

matginv Moore–Penrose generalized-inverse
matrank rank (number of independent rows/columns)
matcond condition number
matorth orthogonal basis of column space (image)
matnull orthogonal basis of null space
matnorm L2-norm of a matrix
matsum row/column/overall sum
matmax row/column/overall maximum
matmin row/column/overall minimum
matrand random matrix

The variable-oriented programs provided with this insert include (see help for varfunc for interactive help):

varcond condition number of implied matrix
varrank rank of implied matrix
varorth Gram–Schmidt orthogonalization of variables
varnull “null space” of variables

The matrix-oriented commands share a number of features:

1. They accept valid matrix expressions such as the name of a matrix, the sum of two matrices, the inverse of a matrix, and so on.
Note that Stata currently does not support more general matrix expressions such as inv(X 0

X).

2. If names for output are not specified, the output is displayed.

Matrix functions based on the singular value decomposition

matginv matname
�
, ginv(name matrix) rank(name scalar) tol(#) display format(fmt)

�
returns the Moore–Penrose (MP) inverse of the matname in a matrix named in ginv. The scalar named in rank returns the rank of
matname. If A is a (n � m) matrix, its MP-inverse B is (m � n), and is the unique solution of 1) ABA = A, 2) BAB = B,
and 3) AB and BA are orthogonal projections. If A is square and regular, the MP-inverse is the ordinary matrix inverse. If A is
square and singular, Stata’s matrix function syminv() returns a g-inverse, which is a different kind of generalized matrix inverse.
The row (column) names of the MP-inverse are the column (row) names of matname. See Campbell and Meyer (1979) for details on
the applications of g-inverse in statistics, difference equations, and so on.

matcond matname
�
, cond(name scalar) display format(fmt)

�
returns the condition number (ratio of largest and smallest singular value) of a matrix in the scalar named in cond.

18 Stata Technical Bulletin STB-39

matrank matname
�
, rank(name scalar) display tol(#) format(fmt)

�
returns the rank (number of independent rows or columns) of a matrix in the scalar named in rank.

matorth matname
�
, orth(name matrix) rank(name scalar) display tol(#) format(fmt)

�
returns an orthogonal basis of the column space (image) of a matrix in the matrix named in orth, and the rank of the matrix in the
scalar named in rank.

matnull matname
�
, null(name matrix) rank(name scalar) display tol(#) format(fmt)

�
returns an orthogonal basis of the null space of a matrix in the matrix named in null, and the rank of the matrix in the scalar named
in rank.

Other matrix functions

matnorm matname
�
, norm(name scalar) display format(fmt)

�
returns the L2-norm of a matrix in the scalar named in norm.

matmax matname
�
, row(rmatname) column(cmatname) all(amatname) display format(fmt)

�
matmin matname

�
, row(rmatname) column(cmatname) all(amatname) display format(fmt)

�
matsum matname

�
, row(rmatname) column(cmatname) all(amatname) display format(fmt)

�
compute and/or display the row-wise, column-wise and over-all maximum, minimum, and sum over the elements of a matrix. More
than one operator may be specified simultaneously and the result of each applied operator is placed in the matrix named in the row,
column, and all options. These commands default to the column-wise operators.

matrand n m matname
�
,
�

normal(mn var) j uniform(lo hi) j const(lo hi)
	

display format(fmt)
�

creates an (n�m) matrix (overwriting the named matrix if it already exists) with elements generated independently from

normal distribution with mean mn and variance var
uniform distribution on the interval [lo, hi]
const distribution on the constants lo, lo+1,: : :, hi

If no distribution is specified, matrand defaults to the U(0,1) distribution.

Options for matrix-oriented programs

display specifies that the computed results are displayed. All programs that are described here display the results if output names
for matrices (scalars) are not specified.

format(fmt) specifies a format (e.g., %10.5f, %10.0g) to display matrix results.

tol(#) specifies the tolerance for deciding what singular values are ‘really’ zero. See below for details. You typically don’t have to
set this option.

Numerical details

The main tool used by these programs is the singular value decomposition of the matrix A = USV
0, where U and V are

(column) orthonormal and S is diagonal with positive entries. We heavily lean on Stata’s singular value decomposition command

Stata Technical Bulletin 19

(matrix svd). Note that Stata can only compute the “economy” solution, and hence cannot be used directly to obtain the null space
of a matrix.

Following Matlab, we compute the rank r(A) of A as the number of singular values that exceed tol, where

tol = max(singular values of A) � size(A) � eps

where eps is a measure of machine precision.

This is also used in computing the MP-inverse (see below) and the column orthogonalization. The condition number c(A) of A
is

c(A) = max(singular values of A)=min(singular values of A)

If the minimum of the singular values is 0, the condition number is defined as missing.

The MP-inverse of a matrix is computed as V � IS �U , where IS is a diagonal matrix with the reciprocal of the singular values
S, or 0 if the singular values are smaller than tol (see above).

Examples

. matrand 5 3 A (random matrix A, iid U(0,1))

. matrand 5 7 B, n(0 10) (random matrix B, iid N(0,1))

. matginv A (display Moore–Penrose inverse)

. matginv A, ginv(AI) (return Moore–Penrose inverse)

. matcond A+B (display condition number of A+B)

. matrank A, rank(ra) (return rank of matrix A)

. matsum A, row(rsumA) (return row-wise sum of A)

Details on variable-oriented programs

These programs return linear algebra characteristics of data, i.e., of an “implied matrix” with the variables in a varlist as columns,
and with the (if/in selected) cases without missing values as the rows. All programs make it easy to append a variable consisting of
all 1’s to varlist.

varcond
�
varlist

� �
if exp

� �
in range

� �
weight

� �
, cond(scalar name) cons display format(fmt)

�
varrank

�
varlist

� �
if exp

� �
in range

� �
weight

� �
, rank(scalar name) cons display

�
varorth

�
varlist

� �
if exp

� �
in range

� �
weight

� �
, prefix(str) cons norm eps(#)

�
varnull

�
varlist

� �
if exp

� �
in range

� �
weight

� �
, null(matrix name) rank(scalar name) cons

display format(fmt)
�

Description

varcond computes the condition number (ratio of largest to smallest singular values) of the implied matrix.

varrank computes the rank (number of independent columns or rows) of the implied matrix.

varorth computes a series of orthogonal variables that span the same column space as varlist by Gram–Schmidt orthogonalization.

varnull computes the “null space” of the implied matrix, i.e., a matrix of coefficients of linear dependencies between the variables.

Options

cons specifies that a constant variable consisting of 1’s should be appended to the varlist. In varorth, the constant is prepended to
the varlist, so that the generated variables are orthogonal to 1.

display specifies that the computed characteristics should be displayed. Recall that the programs automatically display results if no
names for the results are provided.

format(fmt) specifies a format (e.g., %10.4f) used to display scalars or matrices.

20 Stata Technical Bulletin STB-39

Options for varorth

prefix(str) specifies the string prefixed to the variables in varlist to obtain the names of orthogonalized variables.

norm specifies that the returned variables are normalized, i.e., have unit length. The (weighted) covariance matrix of orthonormalized
variables is a unity matrix.

eps(#) specifies a tolerance to decide whether a variable is linear dependent on the previous variables in the varlist. A more reliable
way to obtain the number of linear dependencies is via varrank.

Examples

. varrank price weight turn (rank of data matrix with 3 columns)

. varrank price weight turn if foreign, cons rank(r)

(scalar r will contain rank of foreign data matrix with 4 columns)

. varorth x1 x2 x3 x4 (Gram-Schmidt orthogonalization of x1-x4)

. for 1-4, l(num) : gen I@ = inc^ @ (polynomials in inc)

. varorth I* (orthogonalize them)

. gen pw = price + weight (silly, but ok for illustration)

. varnull price weight pw (varnull will show a matrix with coefficients that)
(indicate that pw is the sum of price and weight)

Technical details

The programs varcond, varrank, varorth, and varnull are variable-oriented versions of the matrix-oriented commands
matcond, matrank, matorth, and matnull. It is important to understand that the variable-oriented and the matrix-oriented pro-
grams use different algorithms. The listed matrix-functions base their results on the singular value decomposition (SVD) of a matrix
(using matrix svd). The SVD provides a numerically reliable algorithm for these functions, though slower than algorithms based on,
e.g., the QR decomposition. However, the SVD may require much more memory than Stata’s matrix modules can cope with. Thus, the
variable-oriented versions are provided as low-precision alternatives. If you fear that your data are ill-conditioned, you have enough
memory, and the number of cases does not exceed matsize, you should use mkmat to make a matrix from your data and use the
matrix programs.

varrank counts the number of nonzero eigenvalues of X 0
X (or X 0

WX if weights are specified) based on the spectral decom-
position (matrix symeigen).

varcond computes the condition number of the variables as the square root of the ratio of the largest to smallest eigenvalues of
X

0
X (or X 0

WX).

varorth uses Gram–Schmidt orthogonalization rather than the SVD of the set of orthogonal variables.

varnull returns the eigenspace of X 0
X (or X 0

WX) associated with zero (or small) eigenvalues, obtained from the spectral
decomposition.

References
Belsey, D. A., E. Kuh, and R. E. Welsch. 1980. Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: John Wiley &

Sons.

Campbell, S. L. and C. D. Meyer, Jr. 1979. Generalized Inverses of Linear Transformations. London: Pitman.

Golob, G. H. and C. F. van Loan. 1983. Matrix Computations. Oxford: North Oxford Academic.

The MathWorks. Matlab Reference Manual. V4. Cambridge, MA: The MathWorks, Inc.

ip19 Using expressions in Stata commands

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

On numerous occasions, I wondered why Stata does not support a list of expressions (e.g., the log-transform of a variable; the
sum of variables) in place of a list of variables. Currently, one has to generate “temporary” variables manually. Support for expressions
where Stata now permits variables only, was requested a number of times by other Stata users on the Stata discussion list. In this insert,
I describe two programs that add support for “expression expansion” in “regular” Stata commands, that is, commands satisfying the
syntax

command
�
varlist

� �
if exp

� �
in range

� �
, options

�

Stata Technical Bulletin 21

Examples of regular commands are the descriptive commands summarize and tab and the single-equation estimation com-
mands regress, logistic, and stcox. Some new commands such as heckman and mvreg do not support equations.

Syntax

expr is a prefix command that enables expressions in regular commands.

expr
�
, nodetail

�
: cmd expression list

�
if exp

� �
in range

� �
weight

� �
using filename

� �
,cmd options

�
exprcmd

�
, nodetail

�
An expression list, is a list of expressions, separated by one or more blanks. Thus, expressions may not contain embedded spaces

as expr is not smart enough to parse such expressions. In addition, a variable list is interpreted as a list of “atomic” expressions,
namely the untransformed existing variables.

Expression expansion is limited to the part of the input string prior to the first comma. Thus expression expansion does not
involve options, equations, etc.

expr silently generates variables (of the default type, thus they are of type float if you haven’t changed the default type; doing
so is very dangerous anyway) named Expr0, Expr1, and so on. Any existing variables that fit the mask Expr are silently dropped.
The generated variables are labeled using the defining expressions.

Example

We illustrate expr with the automobile data distributed with Stata. We want to see summary statistics of the log price and log
weight of cars. For comparison, we also include the untransformed variables price and weight:

. expr: summ price ln(price) weight ln(weight)

Expression _Expr0 := ln(price)

Expression _Expr1 := ln(weight)

-> summ price _Expr0 weight _Expr1

Variable | Obs Mean Std. Dev. Min Max

---------+---

price | 74 6165.257 2949.496 3291 15906

_Expr0 | 74 8.640633 .3921059 8.098947 9.674452

weight | 74 3019.459 777.1936 1760 4840

_Expr1 | 74 7.978751 .2663436 7.473069 8.48467

Note that expr displays the meanings (defining expressions) of the variables that are defined as expressions.

The command expr can also be used to include transformed variables in linear (linear-form) models. Thus, to include the log
price of a car as a predictor of its energy preservation, one can issue the command

. expr: reg mpg ln(price) weight foreign

Expression _Expr0 := ln(price)

-> reg mpg _Expr0 weight foreign

Source | SS df MS Number of obs = 74

---------+------------------------------ F(3, 70) = 45.84

Model | 1619.29662 3 539.765539 Prob > F = 0.0000

Residual | 824.162842 70 11.7737549 R-squared = 0.6627

---------+------------------------------ Adj R-squared = 0.6483

Total | 2443.45946 73 33.4720474 Root MSE = 3.4313

--

mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

_Expr0 | -.0419323 1.523501 -0.028 0.978 -3.08046 2.996595

weight | -.0065686 .0009508 -6.908 0.000 -.0084649 -.0046722

foreign | -1.627584 1.356207 -1.200 0.234 -4.332454 1.077285

_cons | 41.97704 11.02088 3.809 0.000 19.99658 63.9575

--

If you use expressions in estimation commands, you may benefit from the more readable output of the parameter estimates that
is yielded by the command diest, see Weesie (1996).

. diest

22 Stata Technical Bulletin STB-39

--

mpg Mileage (mpg) | Coef. Std. Err. t P>|t|

---+------------------------------------

_Expr0 ln(price) | -.0419323 1.523501 -0.028 0.978

weight Weight (lbs.) | -.0065686 .0009508 -6.908 0.000

foreign Car type | -1.627584 1.356207 -1.200 0.234

_cons | 41.97704 11.02088 3.809 0.000

--

When using expr, one can still use Stata’s post-estimation commands such as predict, test, fit, and so on. For instance,

. predict res, res

. test _Expr0

(1) _Expr0 = 0.0

F(1, 70) = 0.00

Prob > F = 0.9781

If one wants to use expression expansion interactively for a long series of commands, it may become tedious to type the prefix
expr : before all commands. The command exprcmd “switches on” expression expansion in all subsequent commands that are
entered interactively. To indicate that expression expansion is on, the command prompt is modified from Stata’s period (.) to the
string “(expr) .”. Thus, the example session shown before could also be entered as

. exprcmd

(expr) . summ price ln(price) weight ln(weight)

(expr) . reg mpg ln(price) weight foreign

Since expression expansion is only supported in “regular commands,” you may want to suppress expansion in some commands,
for example set, recode, and so on. This is achieved simply by prefixing a command with a period (.), for example

(expr) . .set more off

Finally, interrupting a command with the Break key terminates the command, it does not terminate expression expansion. To
terminate expansion, one should enter the command (.), i.e., a period.

References
Weesie, Jeroen. 1996. sg60: Enhancements for the display of estimation results. Stata Technical Bulletin 33: 12–15.

sbe17 Discrete time proportional hazards regression

Stephen P. Jenkins, ESRC Research Centre on Micro-Social Change, University of Essex, UK, stephenj@essex.ac.uk

Hazard rate models are widely used to model duration data in a wide range of disciplines, from biostatistics to economics. The
aim of this insert is to supplement the portfolio of duration data analysis tools which Stata provides.

pgmhaz estimates, by maximum likelihood, two discrete time (grouped duration data) proportional hazards regression models,
one of which incorporates a gamma mixture distribution to summarize unobserved individual heterogeneity (or “frailty”). Covari-
ates may include regressor variables summarizing observed differences between persons (either fixed or time-varying), and variables
summarizing the duration dependence of the hazard rate. With a suitable definition of covariates, models with a fully nonparamet-
ric specification for duration dependence may be estimated; so too may parametric specifications. pgmhaz thus provides a useful
complement to cox and st stcox, weibull and st stweib.

The two models estimated are: (1) the Prentice–Gloeckler (1978) model; and (2) the Prentice–Gloeckler (1978) model incor-
porating a gamma mixture distribution to summarize unobserved individual heterogeneity, as proposed by Meyer (1990). These are
referred to as Model 1 and Model 2 respectively below. My exposition of the models draws heavily on that of Stewart (1996).

The models

Suppose there are individuals i = 1; : : : ; n, who each enter a state (e.g. unemployment) at time t = 0. The instantaneous
hazard rate function for person i at time t > 0 is assumed to take the proportional hazards form

�it = �0(t) exp(X
0

it�) (1)

Stata Technical Bulletin 23

where �0(t) is the baseline hazard function, � is a vector of parameters to be estimated, andXit is a vector of covariates summarizing
observed differences between individuals at t. LetXit represent the path of the covariate vector between time 0 and time t.

The underlying continuous durations are only observed in disjoint time intervals [0 = a0; a1); [a1; a2); [a2; a3); : : : ; [ak�1;

ak =1). (Alternatively durations are intrinsically discrete.) Assume that any time-dependent covariates only vary between duration
intervals but not within them, i.e. they follow a piece-wise constant (step function) path over time. Thus, letting at = t,Xit is constant
within each duration interval [at�1; at).

The continuous-time survivor function is given by

S(t;Xit) = exp

24� atX
j=a1

exp[X 0

ij� + j]

35
; where j � log

Z aj

aj�1

�0(�)d� (2)

If there are no time-varying covariates (Xit � Xi, for all t), (2) simplifies to

S(t;Xi) = exp f� exp [Xi�� + log(Ht)]g (3)

where Ht �
R t
0
�0(�)d� is the integrated baseline hazard at t:

The probability of exit in the jth interval for person i is

PrfT 2 [aj�1; aj)g = S(aj�1;Xij�1)� S(aj;Xij)

and the survivor function at the start of the jth interval is

PrfT � aj�1g = S(aj�1;Xij�1)

The hazard of exit in the jth interval is thus given by

hj(Xit) � PrfT 2 [aj�1; aj) j T � aj�1g = 1� [S(aj;Xij)=S(aj�1;Xij�1)]

If there are no time-varying covariates, the discrete-time survivor function has exactly the same form as (3):

S(aj ;Xi) = exp f� exp [X 0

i� + �j]g where �j = log(Haj) for j = 1; : : : ; k

To simplify, let us now suppose that all intervals are of unit length (e.g. a week, or a month), so the recorded duration for each
person i corresponds to the interval [ti� 1; ti). Persons are also recorded as either having left the state during the interval, or as still
remaining in the state. The former group, contributing completed spell data, are identified using the censoring indicator ci = 1. For
the latter group, contributing right-censored spell data, ci = 0. Observe that the number of intervals comprising a censored spell is
defined here to include the last interval within which the person is observed.

The sample log-likelihood can be written

logL(�; �) =

nX
i=1

fci log[S(ti � 1;Xiti�1)� S(ti;Xiti)]� (1� ci) logS(ti;Xiti)g

This expression can be rewritten in terms of the hazard function as

logL =

nX
i=1

(
ci log

(
hti(Xiti)

ti�1Y
s=1

[1� hs(Xis)]

)
+ (1� ci) log

(
tiY
s=1

[1� hs(Xis)]

))

where the discrete-time hazard in the jth interval is

hj(Xij) = 1� exp[� exp(X 0

ij� + j)]

24 Stata Technical Bulletin STB-39

This specification allows for a fully nonparametric baseline hazard with a separate parameter, j , for each duration interval, which
can be interpreted as the logarithm of the integral of the baseline hazard over the relevant interval. Alternatively, the sequence of the
j may be described by some semiparametric or parametric function.

If one defines an indicator variable yit = 1 if person i exits the state during the interval [t� 1; t), yit = 0 otherwise, then the
log likelihood can be rewritten in sequential binary response form:

logL =

nX
i=1

tiX
j=1

fyij log hj(Xij) + (1� yij) log[1� hj(Xij)]g

This is the version of the Model 1 log likelihood which is estimated by pgmhaz.

Model 2 incorporates a gamma-distributed random variable to describe unobserved heterogeneity between individuals. For a
discussion of, and comparison with, other types of mixed proportional hazards models, see Stewart (1996).

The instantaneous hazard rate is now specified as (cf. (1))

�it = �0(t)"i exp(Xit) = �0(t) exp[Xit + log("i)]

where "i is a gamma-distributed random variate with unit mean and variance �2 � v, and the corresponding discrete-time hazard
function is now

hj(Xij) = 1� expf� exp[X 0

ij� + j + log("i)]g:

Conveniently, the survivor function for the augmented model has a closed form expression (see Meyer 1990 or Dolton and van der
Klaauw 1995, for details), and hence so too does the log likelihood function.

The Model 2 log likelihood function is

logL =

nX
i=1

log f(1� ci)Ai + ciBig

where

Ai =

241 + v

tiX
j=1

exp
�
X

0

ij� + �(j)
�35�(1=v)

Bi =

8>><>>:
"
1 + v

ti�1P
j=1

exp
�
X

0

ij� + �(j)
�#�(1=v)

�Ai; if ti > 1

1�Ai; if ti = 1

and �(j) is a function describing duration dependence in the hazard rate, including the nonparametric baseline hazard specification
(j). The functional form for �(j) is chosen by the user and specified by defining appropriate covariates—see below. Model 1’s log
likelihood function is the limiting case as v ! 0.

For suitably organized data, the log likelihood function for Model 1 is the same as the log likelihood for a generalized linear model
of the binomial family with complementary log-log link: see Allison (1982) or Jenkins (1995). Model 1 is estimated by maximum
likelihood using Stata’s glm command. Model 2 is estimated using Stata’s ml deriv0 command, with starting values taken from
Model 1’s estimates. Given the potential fragility of models incorporating unobserved heterogeneity, estimates for both models are
always reported.

Syntax

The syntax of pgmhaz is

pgmhaz covariates
�
if exp

� �
in range

�
, id(idvar) dead(deadvar) seq(seqvar)�

lnvar0(#) eform level(#) nolog trace nocons
�

Stata Technical Bulletin 25

Options

lnvar0(#) specifies the value for ln(v) which is used as the starting value in the maximization. The default is �1 (i.e. v ' 0.37).

eform reports coefficients transformed to relative risk format, i.e. exp(�) rather than �: Standard errors and confidence intervals are
similarly transformed. eform may be specified at estimation or when redisplaying results.

level(#) specifies the significance level, in percent, for confidence intervals of the parameters.

nolog suppresses the iteration logs.

trace reports the current value of the estimated parameters of Model 2 at each iteration; see [R] maximize.

nocons specifies no intercept term in the index function X 0

ij�.

Saved results include the global macros set by ml post, plus S 1 which contains the Model 2 log likelihood value at maximum,
and S 2 which contains the Model 1 log likelihood value at maximum.

Estimated coefficients and standard errors may be accessed in the usual way: see [U] 20.5 Accessing coefficients and [R] matrix get.

Data organization and mandatory variables

The dataset must be organized before estimation so that, for each person, there are as many data rows as there are time intervals
at risk of the event occurring for each person. Given the definitions above, this means ti rows for each person i = 1; : : : ; n. In effect
an unbalanced panel data set-up is required. This data organization is closely related to that required for estimation of Cox regression
models with time-varying covariates. expand is useful for putting the data in this form: see [R] expand, and the example below. Also
see the “data step” discussion in Jenkins (1995).

Three variables must be defined by the user:

id(idvar) specifies the variable uniquely identifying each person, i.

seq(seqvar) is the variable uniquely identifying each interval at risk for each person. For each i, seqvar is the integer sequence
1; 2; : : : ; ti:

dead(deadvar) summarizes censoring status during each interval at risk, and corresponds to the indicator variable yit described
earlier. If ci = 0, deadvar = 0 for all j = 1; 2; : : : ; ti; if ci = 1, deadvar =0 for all j = 1; 2; : : : ; ti � 1, and deadvar = 1 for
j = ti.

An example of how to construct these variables is given below.

Example

This illustration uses the cancer dataset (cancer.dta) supplied with Stata. The dataset provides information about survival
times for 48 participants in a cancer drug trial. Of the 48 people, 28 receive the experimental drug treatment (drug = 1) and 20
receive the control treatment (drug = 0). The participants range in age from 47 to 67 years. We wish to analyze time until death,
measured in months. The variable studytim records either the month of their death or the last month that they were known to be
alive (the maximum value in the data is 39). The persons known to have died have variable died = 1 (contributing completed duration
data); those still alive have died = 0 (contributing censored duration data).

First we use the data and recode drug so that it matches the Manual example:

. use cancer

(Patient Survival in Drug Trial)

. replace drug = 0 if drug == 1

(20 real changes made)

. replace drug = 1 if drug > 1

(28 real changes made)

To run pgmhaz we must reorganize the dataset and create the mandatory variables. To understand what is going on, look at how
the data for the first four people is currently organized, and compare this with their data in the reorganized dataset later on.

. gen id = _n /* create unique person identifier */

. list id studytim died drug age in 1/4

id studytim died drug age

1. 1 1 1 0 61

2. 2 1 1 0 65

3. 3 2 1 0 59

4. 4 3 1 0 52

Now expand the dataset so that there is one data row per person per month at risk of dying, and create seqvar and dead:

26 Stata Technical Bulletin STB-39

. expand studytim

(696 observations created)

. sort id

. quietly by id: gen seqvar = _n

. quietly by id: gen dead = died & _n==_N

Compare this data format with the earlier one, taking the same four persons:

. list id studytim seqvar died dead age if id <= 4

id studytim seqvar died dead age

1. 1 1 1 1 1 61

2. 2 1 1 1 1 65

3. 3 2 1 1 0 59

4. 3 2 2 1 1 59

5. 4 3 1 1 0 52

6. 4 3 2 1 0 52

7. 4 3 3 1 1 52

At this stage, with the data reorganized into person-month form, it would be straightforward to generate time-varying covariates.
None are available in cancer.dta however. The illustrative estimations use the fixed covariates drug and age, capturing observed
heterogeneity, and use the gamma mixing distribution to capture unobserved heterogeneity.

The first models estimated using pgmhaz assume that duration dependence in the hazard rate is summarized by a parametric
“Weibull” specification. This is achieved by including a covariate defined as the logarithm of seqvar. (If the estimated coefficient on
this regressor is greater than zero, the hazard increases monotonically with duration; if less than zero, it decreases monotonically.)
The Model 1 estimates are precisely those which would be produced by the command

. gen logd = ln(seqvar)

. glm deadvar logd drug age, f(b) l(c)

except that in pgmhaz I have added output giving log likelihood values. Incidentally, the logistic hazard counterpart to this propor-
tional hazards model could have been estimated with logit applied to the same reorganized dataset (Allison 1982, Jenkins 1995).

. pgmhaz logd drug age, id(id) s(seqvar) d(dead)

(1) PGM hazard model without unobserved heterogeneity

Iteration 1 : deviance = 298.3504

Iteration 2 : deviance = 237.2426

Iteration 3 : deviance = 224.1963

Iteration 4 : deviance = 222.5673

Iteration 5 : deviance = 222.5275

Iteration 6 : deviance = 222.5274

Iteration 7 : deviance = 222.5274

Residual df = 740 No. of obs = 744

Pearson X2 = 650.3937 Deviance = 222.5274

Dispersion = .8789105 Dispersion = .3007127

Bernoulli distribution, cloglog link

--

dead | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

logd | .6402733 .2448109 2.615 0.009 .1604526 1.120094

drug | -2.18907 .4125618 -5.306 0.000 -2.997676 -1.380463

age | .119348 .0369335 3.231 0.001 .0469596 .1917364

_cons | -9.928747 2.262543 -4.388 0.000 -14.36325 -5.494243

--

Log likelihood (-0.5*Deviance) = -111.26371

Cf. log likelihood for intercept-only model (Model 0) = -128.86467

Chi-squared statistic for Model (1) vs. Model (0) = 35.201924

Prob. > chi2(3) = 1.104e-07

(2) PGM hazard model with gamma distributed unobserved heterogeneity

Iteration 0: Log Likelihood = -112.22135

Iteration 1: Log Likelihood = -111.09624

Iteration 2: Log Likelihood = -111.08967

Iteration 3: Log Likelihood = -111.08965

Iteration 4: Log Likelihood = -111.08965

PGM hazard model with gamma heterogeneity Number of obs = 744

Model chi2(3) = .

Prob > chi2 = .

Log Likelihood = -111.0896470

Stata Technical Bulletin 27

--

dead | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

hazard |

logd | .8664734 .4787207 1.810 0.070 -.071802 1.804749

drug | -2.578879 .8275313 -3.116 0.002 -4.200811 -.9569476

age | .141193 .0569466 2.479 0.013 .0295798 .2528062

_cons | -11.29142 3.510489 -3.216 0.001 -18.17185 -4.410984

---------+--

ln_varg |

_cons | -1.247006 1.845572 -0.676 0.499 -4.864262 2.370249

--

Gamma variance, exp(ln_varg) = .28736375; Std. Err. = .53035058; z = .54183734

Likelihood ratio statistic for testing models (1) vs (2) = .34812954

Prob. test statistic > chi2(1) = .55517386

Comparing pgmhaz Model 1 and Model 2 estimates, we see that the duration dependence parameter is larger in the latter. More-
over, the coefficients in Model 2 on drug and age are slightly larger in absolute value. These differences are not unexpected: not
accounting for unobserved heterogeneity induces an underestimate of the extent to which the hazard rate increases with duration (or an
overestimate of the decline) and attenuates the magnitude of the impact of covariates on the hazard rate (see Lancaster 1990, chapter
4).

The size of the variance of the gamma mixture distribution relative to its standard error suggests, however, that unobserved
heterogeneity is not significant in this dataset. A likelihood ratio test of Model 2 versus Model 1 also suggests the same conclusion.
Users should be aware though that standard likelihood ratio tests cannot, strictly speaking, be used to choose between Models 1 and
2, because the former is not a nested version of the latter.

The discrete-time “Weibull” estimates can be compared with the estimates of a continuous-time Weibull model derived using
stweib:

. stset seqvar dead, id(id)

note: making entry-time variable t0

(within id, t0 will be 0 for the 1st observation and the

lagged value of exit time seqvar thereafter)

data set name: cancer.dta

id: id

entry time: t0

exit time: seqvar

failure/censor: dead

. stweib drug age, nohr

(output omitted)

Weibull regression -- entry time t0

log relative hazard form

No. of subjects = 48 Log likelihood = -42.931336

No. of failures = 31 chi2(2) = 35.39

Time at risk = 744 Prob > chi2 = 0.0000

--

seqvar | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

drug | -2.197157 .408785 -5.375 0.000 -2.998361 -1.395953

age | .1202128 .0371591 3.235 0.001 .0473823 .1930433

_cons | -10.58395 2.326241 -4.550 0.000 -15.1433 -6.024599

--

ln p | .5203303 .1389099 3.746 0.000 .2480718 .7925887

p | 1.682583 1.281552 2.209108

1/p | .5943242 .4526714 .7803039

--

As it happens, the coefficient estimates are very similar to corresponding estimates in the discrete time “Weibull” model without
unobserved heterogeneity. The duration dependence parameters are similar too: compare 1�p = 0.683 with the coefficient on logd,
0.640.

We should be wary about drawing conclusions about duration dependence from parametric models like the “Weibull” which
tightly constrain the shape of the baseline hazard function, when in fact the hazard may vary nonmonotonically with duration. More-
over it is well known that conclusions about the importance of unobserved heterogeneity are more reliably drawn if a flexible speci-
fication for the baseline hazard has been used; for a recent discussion, see Dolton and van der Klaauw (1995).

28 Stata Technical Bulletin STB-39

Let us therefore compare some models which allow for more flexibility in the shape of the baseline hazard function. One obvious
reference point is the continuous time Cox model. Estimates for this are reported in Stata Reference Manual, vol. 3, p. 257, and can
be reproduced with the command:

. stcox drug age, nohr baseh(coxbaseh)

(output omitted)

Cox regression -- entry time t0

No. of subjects = 48 Log likelihood = -83.323546

No. of failures = 31 chi2(2) = 33.18

Time at risk = 744 Prob > chi2 = 0.0000

--

seqvar |

dead | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

drug | -2.254965 .4548338 -4.958 0.000 -3.146423 -1.363507

age | .1136186 .0372848 3.047 0.002 .0405416 .1866955

--

The Cox baseline hazard function is graphed on p. 279 of Stata Reference Manual, Release 4.0, vol. 2, and the figure suggests that
the hazard increases nonmonotonically with duration. (The picture can be reproduced with the command gr coxbaseh studytim,

xlab ylab.) The estimates of the baseline hazard estimate are as follows, and confirm the nonmonotonicity:

. sort seqvar

. list seqvar coxbaseh if coxbaseh~=.

seqvar coxbaseh

16. 1 .00013425

46. 1 .00013425

70. 2 .00007571

112. 3 .00007924

149. 4 .00018067

151. 4 .00018067

196. 5 .0002276

201. 5 .0002276

253. 6 .00026013

255. 6 .00026013

301. 7 .00013608

306. 8 .00044866

307. 8 .00044866

335. 8 .00044866

380. 10 .0001891

404. 11 .00041499

429. 11 .00041499

433. 12 .00056331

435. 12 .00056331

476. 13 .00035089

526. 15 .00038132

532. 16 .00043044

559. 17 .00047959

639. 22 .00149966

641. 22 .00149966

652. 23 .00249846

662. 23 .00249846

672. 24 .00168347

680. 25 .00189012

705. 28 .00228993

734. 33 .00437874

Let us now compare the Cox model estimates with various discrete time proportional hazard model specifications. One example
of a flexible parametric specification for the baseline hazard function is a polynomial in duration. One could

. gen seqvar_2 = seqvar^2

. gen seqvar_3 = seqvar^3

and include seqvar, seqvar 2, and seqvar 3, as covariates instead of logd in order to specify a cubic baseline hazard function.

pgmhaz also allows the estimation of fully nonparametric specifications for the baseline hazard (analogously to the Cox model).
The duration interval-specific baseline hazard can only be identified for those intervals during which events (‘deaths’) occur, i.e.
values of seqvar for which there are observations (person-months) with dead = 1. If there are intervals for which this is not true,

Stata Technical Bulletin 29

then either one must change the baseline hazard function specification, or one must drop the relevant person-month observations from
the estimation. (see also the discussion of identification of the logit model in Stata Reference Manual, vol. 2, pp. 371–375.)

To estimate the nonparametric baseline model, first one has to create binary dummy variables corresponding to each duration
interval. It is the user’s responsibility to do this and also to check identifiability. This is straightforward. We can create interval-
specific dichotomous variables, one for each spell month at risk (the maximum number is 39 here), with the following command:

. quietly for 1-39, ltype(numeric): gen byte d@ = seqvar== @

Next we check identifiability of the baseline hazard at each duration interval with

. tab seqvar dead

| dead

seqvar | 0 1 | Total

-----------+----------------------+----------

1 | 46 2 | 48

2 | 45 1 | 46

3 | 44 1 | 45

4 | 42 2 | 44

5 | 40 2 | 42

6 | 38 2 | 40

7 | 36 1 | 37

8 | 33 3 | 36

9 | 32 0 | 32

10 | 30 1 | 31

11 | 27 2 | 29

12 | 24 2 | 26

13 | 23 1 | 24

14 | 23 0 | 23

15 | 22 1 | 23

16 | 20 1 | 21

17 | 19 1 | 20

18 | 18 0 | 18

19 | 18 0 | 18

20 | 16 0 | 16

21 | 15 0 | 15

22 | 13 2 | 15

23 | 11 2 | 13

24 | 10 1 | 11

25 | 9 1 | 10

26 | 8 0 | 8

27 | 8 0 | 8

28 | 7 1 | 8

29 | 6 0 | 6

30 | 6 0 | 6

31 | 6 0 | 6

32 | 6 0 | 6

33 | 3 1 | 4

34 | 3 0 | 3

35 | 2 0 | 2

36 | 1 0 | 1

37 | 1 0 | 1

38 | 1 0 | 1

39 | 1 0 | 1

-----------+----------------------+----------

Total | 713 31 | 744

There are no deaths during months 9, 14, 18–21, 26, 27, 29–32, 34–39, and so a month-specific hazard rate cannot be estimated for
these intervals.

The nonparametric baseline model is estimated by including all the relevant duration interval dichotomous variables, excluding
observations to ensure identifiability (if necessary), and excluding the intercept using the nocons option. (An alternative estimation
strategy would be to include the intercept term and exclude one of the duration interval dichotomous variables.)

. pgmhaz d1-d8 d10-d13 d15-d17 d22-d25 d28 d33 drug age

> if (seqvar>=1 & seqvar<=8) | (seqvar>=10 & seqvar<=13)

> | (seqvar>=15 & seqvar<=17) | (seqvar>=22 & seqvar<=25)

> | seqvar==28 | seqvar==33 ,

> i(id) s(seqvar) d(dead) nocons

(1) PGM hazard model without unobserved heterogeneity

30 Stata Technical Bulletin STB-39

Iteration 1 : deviance = 255.2345

Iteration 2 : deviance = 206.7409

Iteration 3 : deviance = 195.2580

Iteration 4 : deviance = 193.6490

Iteration 5 : deviance = 193.5947

Iteration 6 : deviance = 193.5944

Iteration 7 : deviance = 193.5943

Iteration 8 : deviance = 193.5943

Residual df = 550 No. of obs = 573

Pearson X2 = 590.1132 Deviance = 193.5943

Dispersion = 1.072933 Dispersion = .3519897

Bernoulli distribution, cloglog link

--

dead | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

d1 | -9.321505 2.325432 -4.009 0.000 -13.87927 -4.763742

d2 | -9.888197 2.408603 -4.105 0.000 -14.60897 -5.167421

d3 | -9.841984 2.411291 -4.082 0.000 -14.56803 -5.115941

d4 | -9.008131 2.296365 -3.923 0.000 -13.50892 -4.507338

d5 | -8.758806 2.240112 -3.910 0.000 -13.14934 -4.368267

d6 | -8.617634 2.211921 -3.896 0.000 -12.95292 -4.28235

d7 | -9.269882 2.31374 -4.006 0.000 -13.80473 -4.735034

d8 | -8.075462 2.152716 -3.751 0.000 -12.29471 -3.856216

d10 | -8.931846 2.322521 -3.846 0.000 -13.4839 -4.379788

d11 | -8.144971 2.201254 -3.700 0.000 -12.45935 -3.830592

d12 | -7.819553 2.202429 -3.550 0.000 -12.13624 -3.502872

d13 | -8.27514 2.282109 -3.626 0.000 -12.74799 -3.802288

d15 | -8.190081 2.265841 -3.615 0.000 -12.63105 -3.749113

d16 | -8.068544 2.291659 -3.521 0.000 -12.56011 -3.576975

d17 | -7.959319 2.257287 -3.526 0.000 -12.38352 -3.535118

d22 | -6.799641 2.161635 -3.146 0.002 -11.03637 -2.562914

d23 | -6.231227 2.12435 -2.933 0.003 -10.39488 -2.067578

d24 | -6.597669 2.287659 -2.884 0.004 -11.0814 -2.11394

d25 | -6.481679 2.285573 -2.836 0.005 -10.96132 -2.002038

d28 | -6.293319 2.302273 -2.734 0.006 -10.80569 -1.780946

d33 | -5.654198 2.350609 -2.405 0.016 -10.26131 -1.04709

drug | -2.45515 .4668781 -5.259 0.000 -3.370214 -1.540086

age | .1208959 .037461 3.227 0.001 .0474738 .194318

--

Log likelihood (-0.5*Deviance) = -96.797174

Cf. log likelihood for intercept-only model (Model 0) = -120.56974

Chi-squared statistic for Model (1) vs. Model (0) = 47.545131

Prob. > chi2(22) = .0012454

(2) PGM hazard model with gamma distributed unobserved heterogeneity

Iteration 0: Log Likelihood = -97.7371

(nonconcave function encountered)

Iteration 1: Log Likelihood = -97.178695

Iteration 2: Log Likelihood = -96.672111

Iteration 3: Log Likelihood = -96.66698

Iteration 4: Log Likelihood = -96.666692

Iteration 5: Log Likelihood = -96.666692

PGM hazard model with gamma heterogeneity Number of obs = 573

Model chi2(23) = .

Prob > chi2 = .

Log Likelihood = -96.6666923

--

dead | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

hazard |

d1 | -10.80181 3.943248 -2.739 0.006 -18.53043 -3.073185

d2 | -11.30775 3.896149 -2.902 0.004 -18.94406 -3.671436

d3 | -11.24518 3.875214 -2.902 0.004 -18.84046 -3.649898

d4 | -10.35178 3.703692 -2.795 0.005 -17.61088 -3.092676

d5 | -9.991745 3.504439 -2.851 0.004 -16.86032 -3.12317

d6 | -9.78455 3.385348 -2.890 0.004 -16.41971 -3.14939

d7 | -10.42769 3.437018 -3.034 0.002 -17.16412 -3.691257

d8 | -9.193994 3.290664 -2.794 0.005 -15.64358 -2.744411

d10 | -10.01127 3.344376 -2.993 0.003 -16.56612 -3.456411

d11 | -9.191331 3.235603 -2.841 0.005 -15.533 -2.849666

d12 | -8.820771 3.177368 -2.776 0.006 -15.0483 -2.593245

d13 | -9.261921 3.224425 -2.872 0.004 -15.58168 -2.942165

d15 | -9.145481 3.191924 -2.865 0.004 -15.40154 -2.889424

Stata Technical Bulletin 31

d16 | -8.978681 3.134165 -2.865 0.004 -15.12153 -2.83583

d17 | -8.819529 3.071867 -2.871 0.004 -14.84028 -2.798779

d22 | -7.626859 2.946399 -2.589 0.010 -13.40169 -1.852023

d23 | -7.076276 2.946105 -2.402 0.016 -12.85053 -1.302017

d24 | -7.436352 3.02082 -2.462 0.014 -13.35705 -1.515653

d25 | -7.276834 2.97176 -2.449 0.014 -13.10138 -1.452292

d28 | -7.038744 2.933167 -2.400 0.016 -12.78765 -1.289843

d33 | -6.276739 2.859726 -2.195 0.028 -11.8817 -.6717789

drug | -2.863101 .9693994 -2.953 0.003 -4.763088 -.9631126

age | .1468383 .0667209 2.201 0.028 .0160677 .2776089

---------+--

ln_varg |

_cons | -1.114756 2.041279 -0.546 0.585 -5.115589 2.886076

--

--

Gamma variance, exp(ln_varg) = .32799525; Std. Err. = .66952971; z = .48988902

Likelihood ratio statistic for testing models (1) vs (2) = .26096361

Prob. test statistic > chi2(1) = .60945891

The results suggest that unobserved heterogeneity is not significant in this context, so our preferred specification is Model 1.
Parameter estimates for this model correspond quite closely to the Cox ones. In particular, there is a close match in the pattern of
variation of the baseline hazard with duration: compare the duration interval dummy variable coefficient estimates with the Cox model
estimates listed earlier. The coefficients on drug and age are each somewhat larger in absolute value in the discrete-time model
compared to the Cox model.

The earlier tabulation showed that, even for the months in which there were deaths, the number of deaths was relatively small. A
model with a piece-wise constant baseline hazard function is an example of a compromise model which allows some nonparametric
flexibility in the duration dependence specification, but may help estimation precision when there are few spell endings per duration
interval. To specify a baseline hazard which is constant within six month intervals up to durations of 30 months and constant thereafter,
but allowed to vary between these intervals, one would simply

. gen dur1 = d1+d2+d3+d4+d5+d6

. gen dur2 = d7+d8+d9+d10+d11+d12

. gen dur3 = d13+d14+d15+d16+d17+d18

. gen dur4 = d19+d20+d21+d22+d23+d24

. gen dur5 = d25+d26+d27+d28+d29+d30

. gen dur6 = d31+d32+d33+d34+d35+d36+d37+d38+d39

and use the command

. pgmhaz dur1-dur6 drug age, i(id) s(seqvar) d(dead) nocons

Estimates of Models 1 and 2 for this case (not shown here) indicate that unobserved heterogeneity is not significant and there is
again evidence of a nonmonotonic increase in the baseline hazard with duration. The coefficients on age and drug are similar to those
estimated by both the Cox model and the discrete time proportional hazards model with nonparametric baseline hazard.

Computational and other issues

pgmhaz can be slow, or rather estimation of Model 2 can be. This is partly because the maximization procedure uses numerical
derivatives, and also partly because reorganized datasets can be relatively “large”. Models with fully nonparametric baseline hazard
function specifications also take significantly longer to estimate than models with parsimonious parametric specifications. Using a
Pentium P-120 “smrm PC with 32MB RAM and Stata 5.0 for Windows 3.11 for Workgroups, the “Weibull” pgmhaz model took about
one minute to run, and the nonparametric baseline hazard model about seven minutes. Using a different dataset from cancer.dta,
one with 7410 person-month observations, a model with one covariate and thirteen duration interval dummy variables took about 30
minutes to complete.

The log likelihood function for Model 2 is not globally concave, but convergence is usually achieved without problems. If there
are maximization difficulties, users may find the trace option useful for diagnosing problems. Setting different starting values for
the logarithm of the gamma variance with the lnvar0(#) option may also be helpful.

A warning. Because of the particular ordered sequence person-month structure of the data, the if option should be used with
great care (and the in option should probably never be used). An if expression which refers to all the data rows for each person will
be handled correctly, e.g., selection of an estimation sub-sample according to values of a fixed covariate. Do not select cases using an
expression referring to a duration-varying variable or the results may be unpredictable. One exception to this rule arises when some
observations need to be excluded to ensure identifiability of a model with a nonparametric baseline hazard function, as illustrated

32 Stata Technical Bulletin STB-39

earlier. (In this context, there is one situation I am aware of in which the program will be incorrect if this strategy is followed. This is
when the data contain a person contributing s > 1 intervals to the analysis who “dies” in the sth interval, and there are no “deaths”
observed for any person in the sample during any of the duration intervals prior to s. This situation is likely to be rare.)

Acknowledgments

This work forms part of the scientific program of the ESRC Research Centre on Micro-Social Change, supported by the UK
Economic and Social Research Council and the University of Essex. I owe many thanks to Espen Bratberg, Andy Dickerson, John
Ermisch, Gene Fisher, Andy Henley, Wilbert van der Klaauw, and most especially Bill Sribney and Mark Stewart, for comments and
advice.

References
Allison, P. D. 1982. Discrete-time methods for the analysis of event histories. In Sociological Methodology, ed. S. Leinhardt, 61–97. San Francisco: Jossey–

Bass Publishers.

Dolton, P. and W. van der Klaauw 1995. Leaving teaching in the UK: a duration analysis. Economic Journal 105(429): 431–444.

Jenkins, S. P. 1995. Easy estimation methods for discrete-time duration models. Oxford Bulletin of Economics and Statistics 57(1): 129–138.

Lancaster, T. 1990. The Econometric Analysis of Transition Data, Econometric Society Monograph No. 17. Cambridge: Cambridge University Press.

Meyer, B. D. 1990. Unemployment insurance and unemployment spells. Econometrica 58(4): 757–782.

Prentice, R. and L. Gloeckler. 1978. Regression analysis of grouped survival data with application to breast cancer data. Biometrics 34: 57–67.

Stewart, M. B. 1996. Heterogeneity specification in unemployment duration models. unpublished paper, Department of Economics, University of Warwick,
Coventry, UK.

sg72 Newey–West standard errors for probit, logit, and poisson models

James W. Hardin, Stata Corporation, stata@stata.com

This article discusses the calculation of standard errors that are robust to heteroscedasticity and serial correlation for probit, logit,
and poisson regression models.

In order to calculate any statistic dealing with serial correlation, one must have a variable that identifies the time at which the
individual observations were collected. This is to ensure that the observations are placed in the correct order and that the time steps
between observations are constant so that the lag-dependent calculations are done correctly.

Methods and formulas

In this article, we focus on a model which may be written as yt = mt(xt; �) where mt is the conditional mean of yt given the
covariates xt. We also introduce a parametric family of weighting functions to be used in weighted nonlinear least squares (WNLS)
estimation such that the weighting function ht(xt;) is strictly positive. The motivation of the weighting function is that for some
value of , the weight function is proportional to the conditional variance of yt given the covariates xt and the WNLS estimator b� is
then given by the value of � minimizing

TX
t=1

(yt �mt(xt � �))2=ht(xt; b)
such that under the hypothesis that the conditional mean function is correct, the estimator is asymptotically normal with variance of
the formA�1

BA
�1. We can then estimate the variance using

bA =
1

T

TX
t=1

bg2t
bB = b
0 +

GX
j=1

!(j)

nb
j + b
0

j

o
b
j =

1

T

TX
i=j+1

bstbst�j
!(j) = 1� j=(G+ 1)

where bgt is the weighted gradient (evaluated at b�), bst is the weighted residual, andG is the maximum lag to consider (the bandwidth).
Note that under the hypothesis of independent observations (G = 0), we would have the usual White estimate of variance (c.f. the

Stata Technical Bulletin 33

example of linear regression). Newey and West (1987) show that bB is positive semi-definite. Other extensions of this approach that
use a different weight function !(j) and bandwidth G are not included in this command.

For details on the theoretical derivation of these estimators, the interested reader should consult Wooldridge (1991) or Hamilton
(1994), especially chapter 10.

Syntax

The syntax for nwest is

nwest command varlist
�
if exp

� �
in range

� �
, lag(#) level(#) t(varnamet) opts

�
where command is one of regress, logit, probit, or poisson.

Note that nwest regress will produce the same results as using Stata’s newey command.

Options

lag(#) specifies the maximum lag to consider in calculating the standard errors. The default is zero.

level(#) specifies the confidence level, in percent, for confidence intervals. The default is level(95) or as set by set level; see
[U] 26.4 Specifying the width of confidence intervals.

t(varnamet) needs to be specified only if a nonzero lag() is also specified; t() specifies the variable that contains the time at which
each observation was recorded. t() can also be omitted if it has been specified on a previous run; nwest will remember the
previous identity of t().

opts are options supported by the individual command (e.g., irr for poisson).

Example: linear regression models

We use the automobile dataset to illustrate that the nwest command will produce the same results as the newey command. We
also show that considering the Newey–West estimate with lag zero is equivalent to the robust standard error provided by the regress
command.

. nwest regress price weight displ

Regression with Newey-West standard errors Number of obs = 74

maximum lag : 0 F(2, 71) = 14.44

Prob > F = 0.0000

--

| Newey-West

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

weight | 1.823366 .7808755 2.335 0.022 .2663446 3.380387

displ | 2.087054 7.436967 0.281 0.780 -12.74184 16.91595

_cons | 247.907 1129.602 0.219 0.827 -2004.454 2500.269

--

. newey price weight displ, lag(0)

Regression with Newey-West standard errors Number of obs = 74

maximum lag : 0 F(2, 71) = 14.44

Prob > F = 0.0000

--

| Newey-West

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

weight | 1.823366 .7808755 2.335 0.022 .2663446 3.380387

displ | 2.087054 7.436967 0.281 0.780 -12.74184 16.91595

_cons | 247.907 1129.602 0.219 0.827 -2004.454 2500.269

--

. regress price weight displ, robust

34 Stata Technical Bulletin STB-39

Regression with robust standard errors Number of obs = 74

F(2, 71) = 14.44

Prob > F = 0.0000

R-squared = 0.2909

Root MSE = 2518.4

--

| Robust

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--

weight | 1.823366 .7808755 2.335 0.022 .2663446 3.380387

displ | 2.087054 7.436967 0.281 0.780 -12.74184 16.91595

_cons | 247.907 1129.602 0.219 0.827 -2004.454 2500.269

--

Example: probit and logit models

In this example, we use data on the unionization of women. We first present the results of a probit analysis not addressing possible
heteroscedasticity or serial correlation.

. probit union age grade not_smsa south southXt

Iteration 0: Log Likelihood =-10465.715

Iteration 1: Log Likelihood =-10252.844

Iteration 2: Log Likelihood =-10252.282

Iteration 3: Log Likelihood =-10252.282

Probit Estimates Number of obs = 19224

chi2(5) = 426.87

Prob > chi2 = 0.0000

Log Likelihood = -10252.282 Pseudo R2 = 0.0204

--

union | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .0058862 .0018991 3.099 0.002 .0021639 .0096084

grade | .0188945 .0042971 4.397 0.000 .0104724 .0273167

not_smsa | -.1474075 .0233975 -6.300 0.000 -.1932658 -.1015493

south | -.3319289 .285638 -1.162 0.245 -.891769 .2279113

southXt | -.0002766 .0035351 -0.078 0.938 -.0072052 .0066521

_cons | -.9784501 .0793062 -12.338 0.000 -1.133887 -.8230127

--

As there are repeated observations over time, we suspect that there will be a problem with serial correlation which should be
addressed (up to lag 2).

. nwest probit union age grade not_smsa south southXt, lag(2) t(time)

Probit with Newey-West standard errors Number of obs = 19224

maximum lag : 2 chi2(5) = 227.09

Prob > chi2 = 0.0000

--

| Newey-West

union | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---------+--

age | .0058862 .0024516 2.401 0.016 .0010811 .0106912

grade | .0188945 .0063701 2.966 0.003 .0064093 .0313798

not_smsa | -.1474075 .0318795 -4.624 0.000 -.2098902 -.0849249

south | -.3319289 .3573839 -0.929 0.353 -1.032389 .3685308

southXt | -.0002766 .0044246 -0.063 0.950 -.0089486 .0083954

_cons | -.9784501 .1103485 -8.867 0.000 -1.194729 -.7621709

--

Note that probit and logit models may be run the same way using the logit keyword instead of the probit keyword.

Example: poisson models
In this example, we use the data listed in the Stata Reference Manual:

. list

agecat smokes deaths pyears

1. 1 1 32 52407

2. 2 1 104 43248

3. 3 1 206 28612

4. 4 1 186 12663

5. 5 1 102 5317

Stata Technical Bulletin 35

6. 1 0 2 18790

7. 2 0 12 10673

8. 3 0 28 5710

9. 4 0 28 2585

10. 5 0 31 1462

We would like to obtain the robust standard errors but the poisson command does not have a robust option. We also can not
obtain robust standard errors from the glm command as it does not have the robust option either.

. tab agecat, gen(a)

agecat | Freq. Percent Cum.

------------+-----------------------------------

1 | 2 20.00 20.00

2 | 2 20.00 40.00

3 | 2 20.00 60.00

4 | 2 20.00 80.00

5 | 2 20.00 100.00

------------+-----------------------------------

Total | 10 100.00

. poisson deaths smokes a2-a5, exposure(pyears) irr

Iteration 0: Log Likelihood = -34.022705

Iteration 1: Log Likelihood = -33.60083

Iteration 2: Log Likelihood = -33.600098

Poisson regression, normalized by pyears Number of obs = 10

Goodness-of-fit chi2(4) = 12.132 Model chi2(5) = 922.935

Prob > chi2 = 0.0164 Prob > chi2 = 0.0000

Log Likelihood = -33.600 Pseudo R2 = 0.9321

--

deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--

smokes | 1.425518 .1530638 3.302 0.001 1.154984 1.759421

a2 | 4.410583 .8605195 7.606 0.000 3.009011 6.464996

a3 | 13.8392 2.542637 14.301 0.000 9.654325 19.83809

a4 | 28.51678 5.269876 18.130 0.000 19.85177 40.96395

a5 | 40.4512 7.77551 19.249 0.000 27.75325 58.95885

--

. nwest poisson deaths smokes a2-a5, exposure(pyears) irr

Poisson with Newey-West standard errors Number of obs = 10

maximum lag : 0 chi2(5) = 7089.45

Prob > chi2 = 0.0000

--

| Robust

deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]

---------+--

smokes | 1.425518 .1665546 3.034 0.002 1.133758 1.792361

a2 | 4.410583 .9255229 7.072 0.000 2.923335 6.654468

a3 | 13.8392 2.760089 13.174 0.000 9.361538 20.45853

a4 | 28.51678 5.69211 16.786 0.000 19.28394 42.17015

a5 | 40.4512 9.105199 16.438 0.000 26.02158 62.88241

--

References
Hamilton, J. D. 1994. Time Series Analysis, Princeton, NJ: Princeton University Press.

Newey, W. K. and K. D. West. 1987. A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55:
703–708.

Wooldridge, J. M. 1991. On the application of robust, regression-based diagnostics to models of conditional means and conditional variances. Journal of Econo-
metrics 47: 5–46.

36 Stata Technical Bulletin STB-39

STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.

International Stata Distributors

International Stata users may also order subscriptions to the Stata Technical Bulletin from our International Stata Distributors.

Company: Applied Statistics & Company: Smit Consult
Systems Consultants Address: Doormanstraat 19

Address: P.O. Box 1169 Postbox 220
Nazerath-Ellit 17100, Israel 5150 AE Drunen

Phone: +972 66554254 Netherlands
Fax: +972 66554254 Phone: +31 416-378 125

Email: sasconsl@actcom.co.il Fax: +31 416-378 385
Countries served: Israel Email: j.a.c.m.smit@smitcon.nl

Countries served: Netherlands

Company: Dittrich & Partner Consulting Company: Survey Design & Analysis Services
Address: Prinzenstrasse 2 Address: 249 Eramosa Road West

D-42697 Solingen Moorooduc VIC 3933
Germany Australia

Phone: +49 212-3390 200 Phone: +61 3 59788329
Fax: +49 212-3390 295 Fax: +61 3 59788623

Email: evhall@dpc.de Email: rosier@survey-design.com.au
Countries served: Austria, Germany, Italy Countries served: Australia

Company: Metrika Consulting Company: Timberlake Consultants
Address: Roslagsgatan 15 Address: 47 Hartfield Crescent

113 55 Stockholm West Wickham
Sweden Kent BR4 9DW U.K.

Phone: +46-708-163128 Phone: +44 181 462 0495
Fax: +46-8-6122383 Fax: +44 181 462 0493

Email: hedstrom@metrika.se Email: info@timberlake.co.uk
Countries served: Baltic States, Denmark, Finland, Countries served: Ireland, U.K.

Iceland, Norway, Sweden

Company: Ritme Informatique Company: Timberlake Consultants
Address: 34 boulevard Haussmann Satellite Office

75009 Paris Address: Praceta do Comércio,
France N�13–9� Dto. Quinta Grande

Phone: +33 1 42 46 00 42 2720 Alfragide Portugal
Fax: +33 1 42 46 00 33 Phone: +351 (01) 4719337

Email: info@ritme.com Telemóvel: 0931 62 7255
Countries served: Belgium, France, Email: timberlake.co@mail.telepac.pt

Luxembourg, Switzerland Countries served: Portugal

