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gr16.1 Convex hull plots

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

The syntax for the chplot command is

chplot yvar xvar
�
if exp

� �
in range

� �
, hull(#) hv(hullvar) movie graph options

�

Note: chplot requires the conhull and condraw programs which must be installed from the gr16 directory of the STB 23 disk
(January 1995).

Options

hull(#) specifies the convex hull required. The default is 1, the outermost hull.

hv(hullvar) specifies a variable to hold information about the hulls and is only needed if hull1 is a variable in the data set.

movie specifies that the final graph (for hull > 1) is to be preceded by a movie of the hulls up to hull. Thus, hull(2) movie

means that the final graph includes hull 2 and that hulls 1 and 2 will be shown separately beforehand.

graph options are any options allowed with graph, twoway. See help on graph. Defaults are c(.l) s(oi) t1(" ") with l1

and b1 indicating y and x variables as usual.

Explanation

The convex hull programs conhull and condraw of Gray and McGuire (1995) are a very useful adjunct to the graphics
facilities of Stata. The program here, chplot, is a supplement to those programs designed to streamline two frequent needs,
namely to get either a quick or a presentable graph of a particular convex hull on a standard scatter plot. chplot in fact calls
conhull and condraw, which do all the hard work, so all that is offered is a different interface that will ease some tasks.

The use of chplot varies from the use of conhull and condraw in the following details:

1. conhull and condraw require the user to specify the x variable before the y variable, contrary to the convention of graph,
twoway that will be familiar to experienced Stata users. chplot uses the same convention as graph, twoway; that is, the
y variable before the x variable.

2. conhull and condraw leave behind extra variables and extra observations specifying the hulls and allowing graphical
closure of the hulls. These extras have to be dropped from the data set each time other convex hulls are drawn in the
same Stata session. chplot handles these details by using temporary variables and leaving the data unchanged. A partial
exception is that condraw uses a stub, by default hv, for a set of variables, e.g. hv1, hv2, : : : . I do not know a way to
specify a temporary stub in Stata; one problem is that all temporary variables have names 8 characters long underneath
the names that the programmer employs. I have left condraw and conhull unchanged and merely used a stub hull. A
guess at user practices is that the varname hull1 is less likely in user data sets than the varname hv1. If hull1 is in
the data set when chplot is invoked, an error message is issued and the hv option must be used to specify another new
variable. However, hull1 is not left behind by chplot, so that it is in effect used as a temporary variable.

3. chplot allows the user to specify if and in.

4. chplot allows the user to specify the graph, twoway options for a presentable graph at the same time as invoking condraw

and conhull.

5. chplot has a simpler syntax for the tasks described, especially for the casual user.

6. chplot does not allow separate hulls to be drawn for each level of a categorical variable.

7. chplot does not allow two or more hulls to be drawn on the same graph.

8. chplot does not allow the user to examine the subsets of the data defined by each convex hull.

Items 1–5 are suggested to be advantages of chplot, while items 6–8 are limitations.
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Examples

We will work with data on 158 glacial cirques from the English Lake District (Evans and Cox 1995), found in the
accompanying file cirques.dta. Glacial cirques are hollows excavated by glaciers that are open downstream, bounded upstream
by the crest of a steep slope, and accurate in plan around a more gently sloping floor. More informally, they are sometimes
described as “armchair-shaped”. They are common in mountain areas that have or have had glaciers present.

Whether cirque shape changes with size is one question of interest to geomorphologists. Given data on cirque length and
width, the outermost convex hull is simply displayed by

. chplot length width
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Figure 1. Convex hull plot: natural scale.

The next step might be to use logarithmic scales and to add some sensible labels by

. chplot length width, xlog ylog xlabel(200,500,1000,2000) ylabel(200,500,1000,2000)
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Figure 2. Convex hull plot: logarithmic scale.

Here we are exploiting the congenial fact that, for this example, taking the convex hull and logarithmic transformation of both
variables are commutative; the result is the same whichever you do first. Note, however, that this is necessarily true only for
affine transformations and must be checked otherwise.

References
Evans, I. S. and N. J. Cox. 1995. The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie 39: 175–202.

Gray, J. P. and T. McGuire. 1995. gr16: Convex hull programs. Stata Technical Bulletin 23: 11–15. Reprinted in Stata Technical Bulletin Reprints,
vol. 4, pp. 59–66.
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gr24 Easier bar charts

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

The syntax for the vbar command is

vbar varlist
�
weight

� �
if exp

� �
in range

� �
, sort(sortvar) rsort(sortvar)

laby(labelvar) by(byvar) category sepbars perc prop pbyg pbyv bar options
�

Options

sort(sortvar) means that bars are to be plotted in ascending order of sortvar, highest values on the right. If weights are used
and sortvar is numeric, then the order is calculated using the weights. sort may not be combined with rsort or by.

rsort(sortvar) means that bars are to be plotted in descending order of sortvar, highest values on the left. If weights are used
and sortvar is numeric, then the order is calculated using the weights. rsort may not be combined with sort or by.

laby(labelvar) means that bars are to be plotted with labels from labelvar, normally but not necessarily a string variable
containing text. laby may not be combined with by.

by(byvar) means what it does with graph, bar: bars are plotted in groups according to the values of byvar. Note that by may
not be combined with sort, rsort, or laby.

category applies when varlist contains a single categorical variable and it is desired to show the count or frequency in each
category. If the number of categories is 6 or fewer, a set of temporary indicator variables will be generated, and the bars
will touch and have (by default) different colors and shadings. If the number of categories is 7 or more, the categories will
be plotted as separate bars for a single variable, with the same color and shading, so long as by has not been invoked.
However, if separate bars are preferred when the number of categories is 6 or fewer, use the sepbars option in addition.

sepbars is explained just above and is restricted to overriding a default behavior with the category option.

perc means that results are to be reported as percents. The default is percents of the grand total of all the variables in the varlist.
See also pbyg and pbyv. perc and prop are mutually exclusive.

prop means that results are to be reported as proportions or fractions between 0 and 1. The default is proportions of the grand
total of all the variables in the varlist. See also pbyg and pbyv. prop and perc are mutually exclusive.

pbyg means that percents or proportions (one must be specified) are of the total of all the values in each group, defined by one
value of the by() variable. pbyg and pbyv are mutually exclusive.

pbyv means that percents or proportions (one must be specified) are of the total of all the values for each variable in the varlist.
pbyv and pbyg are mutually exclusive.

bar options are other options allowed with graph, bar. See [R] graph or on-line help for graph, including details on means,
stack, shading(), and alt.

Explanation

Simple bar charts can be surprisingly awkward in Stata. The basic reason for this is that graph, bar has a built-in tendency
to add up whatever is fed to it. This is fine so long as what you want plotted are sums of values in their original units, or
means, which are one step away with the means option. If you want something else, some preprocessing is required, which
makes some basic tasks rather complicated, especially for users new to Stata.

I have written vbar as a way of automating the most common kinds of preprocessing. vbar is intended to be just graph,
bar with some added bells and whistles.

First, however, I will commend hist. If you find graph, bar frustrating, check out hist, which gives a histogram for
categorical variables. hist may be the answer to your question.

There are three main problems that vbar is designed to tackle. They sometimes arise in combination, especially the first
and the second.
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Problem 1: Percents and proportions

Suppose you want results plotted in percents (sum 100) or proportions (sum 1). It is necessary to transform your variables
so that their values do indeed add up to the appropriate sum, 100 or 1. In STB-14, Felicia Knaul (1993) asked how to create
stacked bar charts of percents. The answer to her question was six command lines creating the percents before they are fed to
graph, bar. With vbar, the answer to her problem would be

. vbar P*, stack by(age) title("Work and school status by age") perc pbyg

where the options perc and pbyg call for percents and for those percents to be calculated for each group (p by g).

Let us look at another similar example, especially for those without access to the insert by Knaul. Smith (1984) studied the
geography of crime in an area of Birmingham, England. She asked 531 residents in an ethnically mixed area whether they had
taken any action to avoid victimization. Her table can be read into Stata and a bar chart drawn using vbar (see Figure 1).

. input int (yes no) str8 race

1. 41 51 "W.Indian"

2. 129 53 "Asian"

3. 182 75 "white"

4. end

. vbar yes no, by(race) ylabel
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Asian W.Indian white

Figure 1. vbar chart.

This could also have been done by

. sort race

. graph yes no, bar by(race) ylabel

However, where vbar excels is in the next step, standardizing so that we look at percents (see Figure 2):

. vbar yes no, by(race) ylabel perc pbyg l2(percent)
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Figure 2. vbar chart with percents.
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The option stack could have been added with both graph, bar, and vbar.

Another option allowed with vbar is pbyv (percent or proportion for each variable). If perc or prop (which calls for
proportions) is called without pbyv or pbyg, the default is that they are calculated with reference to the total of all the variables
in the varlist, which is naturally equivalent to pbyv if there is just one variable.

Problem 2: Categorical variables

Suppose you have a categorical variable coded numerically with more or less arbitrary codes. graph, bar would treat each
code literally, that is to say, numerically, so that if a variable were coded 1, 2, and so forth, all the 1’s would be added up, all
the 2’s added up, and so forth, so that each bar would represent the frequency of the value, multiplied by the arbitrary code. In
the automobile data distributed with Stata, rep78 is such a categorical variable with codes 1 through 5.

hist is an answer to this problem and plots frequencies (as, in a cruder way, does tabulate, plot). Yet with hist, the
bars touch, which you may not want, perhaps because you are sensitive about giving the impression of an underlying continuous
scale. Note also that hist, by() is not similar to graph, bar by().

A solution which is rather Stata-ish is to use tabulate, gen() to generate a set of indicator variables (values 1 or 0)
that when added up by graph, bar will give the desired frequencies. Experienced Stata users will do this as a conditioned
reflex, but to those learning Stata it can seem a trifle arcane. vbar automates this indicator variable line of attack when called
with the category option. The attack fails if the number of categories exceeds 6, because graph, bar will not allow more
than 6 variables. There is another line of attack that is then tried, which has the consequence that it plots separate bars, so long
as by has not been used as an option. Separate bars may or may not be what is preferred. If there are 6 or fewer categories,
invoking the sepbars option will override the default. In the automobile example, the category and sepbars options produce
the following plot:

. vbar rep78, category sepbars ylabel

0
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 Repair Record 1978

1 2 3 4 5

Figure 3. vbar with category option.

With the Smith data looked at earlier, the assumption was that we were reading in the counts from a summary table. What
is also likely with such data is that we do not have the summary counts but the raw data in a categorical variable, say answer,
taking values yes or no. The bar chart would then be produced by

. vbar answer, category by(race) ylabel perc pbyg

Note that vbar only allows one variable in the varlist with the category option. So

. vbar a, category

is allowed, but not

. vbar a b, category

The best reasons for this limitation are that users do not often seem to want the latter form, and that if they ask for it, they
really would be better served by

. vbar a, by(b) category
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or

. vbar b, by(a) category

instead, which is fine. Note that in the last example the category option specifies that b is a categorical variable. a is treated
as one automatically, as is true of graph, bar. Under Stata 5.0, which vbar assumes, both a and b can be string variables as
well as numeric, because of a change to tabulate.

Problem 3: Ordered, labeled bar charts

Consider the United States census data distributed with Stata. You might want a bar graph of divorces for each state,
labeled with state identifiers. The full names would lead to a very messy graph, but two-letter identifiers (in lower case) would
be just about tolerable. Let us assume that st2 contains those identifiers (in lower case), such as tx (a little state somewhere
in the South). We have included with this insert a file called census1.dta containing the variables state and divorce from
census.dta as well as the variable st2 with the two letter identifiers.

. graph div, bar by(st2)

requires a preceding

. sort st2

and produces an alphabetically ordered bar chart, which may be what you want. On the other hand,

. graph div, bar by(div)

requires a preceding

. sort div

and produces a numerically ordered bar chart. Incidentally, this works properly only because the 50 states have 50 unique values
for div, with no ties. You would not always be so lucky. What if you want both the state labeling and the numerical ordering?
It can be done by graph, bar with preprocessing, and it is done on request by vbar. vbar separates the ordering and the
labeling by another variable. The cost, however, is that the values of the string variable become value labels, and so cannot be
more than 8 characters long. There may well be some trick to get round this limit.

. vbar div, sort(div) laby(st2) ylabel

. vbar div, rsort(div) laby(st2) ylabel

would produce bar charts with the divorces increasing or decreasing from left to right, respectively (see Figure 4 for the result of
the first of these commands), and labeled by the state identifiers. Any ties in either the div (values) or the st2 (labels) variables
would have been handled properly, and separate bars shown for separate, but equal, values.
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Figure 4. vbar with laby() option.

So far we have considered the case in which laby() takes a string variable as argument. The option may also be used
with a numeric variable which is either labeled (its labels are used) or unlabeled (its values are used as labels). The same length
limit of 8 characters applies.
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Note that the sorting in vbar is alphabetic, or reverse alphabetic, with string variables, and takes account of any weights
specified with numeric variables. I can imagine cases in which the user wants the bar heights to reflect the weights, but not the
sorting variable. Note that they need not be the same variable. That cannot be handled by vbar. It would make the syntax and
programming more complicated for what is, I guess, an unusual case that can be tackled by something like

. gen bar = foo*weight

. vbar bar, sort(bazz)

In the above, the user wishes to apply weights to foo, which together determine the bar heights, but not to the sorting variable
bazz.

It is not an error to call the sort or rsort option without laby. In that case, n is used to label the sorted bars.

References
Knaul, F. 1993. qs5: How to create stacked bar charts of percentages. Stata Technical Bulletin 14: 12–13. Reprinted in Stata Technical Bulletin

Reprints, vol. 3, pp. 71–72.

Smith, S. J. 1984. Crime and the structure of social relations. Transactions, Institute of British Geographers 9: 427–442.

gr25 Spike plots for histograms, rootograms, and time-series plots

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk
Anthony R. Brady, Public Health Laboratory Service Statistics Unit, UK, tbrady@phls.co.uk

Syntax

The syntax for the spikeplt command is

spikeplt varname
�
weight

� �
if exp

� �
in range

� �
, round(#) frac root zero(#) graph options

�

Options

round(#) uses the round() function to round varname to the nearest multiple of #. See the help on functions or [U] 20.3.5 in
the manual. In other words, round specifies the bin width or class interval.

frac specifies that the vertical scale is to show fractions. This convention is the opposite of that for graph, histogram.

root specifies that the vertical scale is to show square roots of frequencies (J. W. Tukey’s “rootogram”).

zero(#) specifies a constant other than 0 as a level from which spikes are drawn vertically.

graph options are options allowed with graph, twoway. by() is allowed, but total is trapped with a warning, as the total
graph produced with by(byvar) total would superimpose spikes, not add them vertically.

The defaults for these graph options are

l2title of “Frequency” (or “Fraction”, if frac is used, or “Root of frequency”, if root is used);

b2title of the variable label of varname (or varname itself, if the label is not defined);

c(||), so that each bin or value is shown by a vertical spike;

s(ii), so that invisible point symbols are used.

Explanation

A standard idiom with graph is

graph y1 y2 x , c(||) sy(ii)

which connects y1 and y2 by vertical lines on a scatter (twoway) plot of y1 and y2 against x, in this case without visible point
symbols. From that it is a small step to see that setting y2 to a constant (e.g., 0 or some other reference level) produces some
useful graphs, and another small step to see that some prior calculation gives you a kind of histogram, with separate spikes, not
touching bars.

spikeplt has been written to automate the production of such graphs, so that users can, as far as possible, get what they
want with a single command. The name “spike plot” was suggested partly by the “spike chart” of Berry (1996, 14).
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Histograms

Some data analysts producing histograms seem to prefer spikes to bars, as a matter of logic or of taste, especially with
discrete variables. Examples are found in Plackett (1971) and Evans, Hastings, and Peacock (1993). Even if people want a
conventional histogram with touching bars, the limit in graph, histogram of 50 bins sometimes proves frustrating. In our
experience, this is often when there is some fine structure in the frequency distribution that is of interest, even if it is in some
way spurious or pathological. Examples come from demographic data on human ages; people prefer to state certain ages (such
as multiples of 10 or 5 years) as a matter of vanity, ignorance, biases in memory, and so forth. The number of possible ages
is clearly about 100 and the fine structure of the distribution can only be seen well if each is a separate bin. For such tasks,
spikeplt offers an alternative to graph, histogram.

A more pervasive issue is the size of the data set. In broad terms, the details of a histogram should be less affected by
quirks of sampling as the number of values n increases. Hence with larger n, more bins can be justified, although it is difficult
to make this precise in a general manner. Suggested rules of thumb for the number of bins include those discussed by Emerson
and Hoaglin (1983) and in [R] graph histogram. With a rule of 2

p
n, more than 50 bins would be needed for n > 625; with

a 10 log
10
n rule, for n > 100,000; and with Sturges’ rule 1 + log

2
n, for n > 249 � 5:6 � 1014. Another rule, suggested

half-seriously by the current first author, is 3 3
p
n, for which the threshold is 4,630. The compromise rule discussed in [R] graph

histogram of
min(

p
n; 10 log

10
n)

leads to a threshold of 100,000. Without taking these rules more literally than they deserve, we note simply that some, but not
all, imply more than 50 bins for data set sizes that are frequently encountered.

Note that in Stata 5.0, it is possible, at the cost of some programming, to create your own alternative histograms with gph.
These could have more than 50 bins and they could even have unequal bin widths.

Rootograms

spikeplt allows the production of the “rootograms” suggested by J. W. Tukey circa 1965. The idea is to show not
frequencies, but their square roots. Frequencies, as counted variables, tend to have variability that is stabilized by a root
transformation, at least approximately. Note also that the square root of a normal or Gaussian density is a multiple of another
normal or Gaussian density. Hence if the normal is the reference distribution, we are looking for the same shape on a rootogram,
and experience in assessing histograms for approximate normality can be applied directly in assessing rootograms. However,
taking the root is only the first step in Tukey’s procedure, and we do not implement his hanging or suspended rootograms. See
Tukey (1965, 1972, 1977), Tukey and Wilk (1965), or Velleman and Hoaglin (1981).

Consider dotplots

In several ways, spike plots are comparable to the dotplots provided by Stata’s dotplot command, which can also be very
useful in showing the fine structure of data distributions. Apart from the obvious difference that dots represent individual values
and spikes represent bin frequencies, a further difference is that dotplots are tuned by indirectly changing the number of bins,
whereas spike plots are tuned by directly changing the bin width. For many problems, we prefer dotplots to spike plots, and
conversely.

Time-series plots

Some kinds of time series lend themselves quite well to spike plots. Daily rainfalls for a year are often plotted as a series
of vertical spikes. On such graphs, wet and dry spells come out well, even for British stations, where according to a U.S. myth
it is usually raining. For other time series, setting y2 to some average level shows clearly periods above and below average.

Examples

In practice, frequency distribution problems for spikeplt come in two forms. First, the data for a variable are to be
summarized as a frequency distribution. This requires basically

spikeplt varname

so long as the bin width or class interval is the same as the resolution of the data, or

spikeplt varname, round(#)

if rounding is required. The number specified in place of # is the bin width or class interval.

Second, the data for two variables show values and frequencies. This form requires the use of weights. For example,
Mosteller, Fienberg, and Rourke (1983, 83) give data on the age structure of the population of Ghana reported in the 1960
census, rounded down to the nearest thousand, and taken from the U.N. Demographic Yearbook for 1962 (p. 189). These data
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can be found in the file ghanaage.dta. For ages from 0 (under 1 year) to 90 years, the frequencies are the numbers at each
age. Note that 15000 people were 91 and over or of unknown age. 91 bins are too many for graph, histogram, which is why
we are using spikeplt.

The command is then

. spikeplt age [w=pop], l2("Population in 000") gap(5) ylabel xlabel(0,20,40,60,80) xtick(10,30,50,70,90)
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Figure 1. Spike plot of age.

The resulting graph shown in Figure 1 shows heaping of ages, which is a well-known phenomenon in demography. It
is easy to pick out preferences for ages that are multiples of 10 and of 5. In addition, ages ending with 2, 4, 6, and 8 are
generally more frequent and ages ending with 1, 3, 7, and 9 generally less frequent than would be expected if there were a
relatively smooth underlying distribution. Further comment would require some anthropological or sociological knowledge on
the significance of various numbers among this population: is 30, for example, a particularly important age to achieve for some
or all groups in Ghana? Another example of age heaping for the female population of Mexico is given by Mosteller and Tukey
(1977, 476–477). Apart from its occurrence in demography, which appears to have been recognized since at least the 18th
century (Westergaard 1932, 77), preference for certain digits in reported numbers has been identified in several sciences (Cox
1991). Spike plots showing the frequencies of all possible results are a natural tool in recognition of such biases.

Time-series plots that are spike plots also require the use of weights. The usual situation is that each time occurs just once
in the data. Reference levels other than 0 are often useful, such as a mean or median.

To illustrate using spikeplt for time series, we consider the yearly temperature means for the world and each hemisphere
given by Parker and Jones (1991), expressed as deviations from the 1951–80 mean. The data are given in gltemp.dta. A spike
plot representation of the Southern hemisphere series is given in Figure 2 and is obtained by

. spikeplt year [w=shtemp], l1("temperature deviation from 1951-80 mean") l2("deg C") gap(5)
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Figure 2. Spike plot of temperature showing deviations from 1951–80 mean

The pattern of recent warming stands out quite well. Note that we must override the default l2title of “Frequency”, which
makes no sense in this example.



Stata Technical Bulletin 11

Note that when printing the result of using spikeplt, users may want to draw the spikes with pen thicknesses larger than
the default.
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ip16 Using dialog boxes to vary program parameters

H. Joseph Newton, Texas A&M University, FAX (409) 845-3144, jnewton@stat.tamu.edu

One of the most exciting new features of Stata 5.0 for Windows is the ability to use dialog boxes to provide a graphical
user interface to Stata commands and programs. While dialog boxes can be used in a variety of ways, in this insert we describe
how they can be used to rapidly vary the value of a parameter such as a smoothing parameter or a bandwidth in a kernel density
estimator and have for each value of the parameter a new graph appear in the graphics window. This use of dialog boxes makes
it possible to emulate using a “slider” in a language such as Xlisp.

To illustrate what we mean, consider Figure 1 where we are using a program we have written called ptransdb (“power
transform dialog box”) to try to find a suitable power transform for a time series of monthly sales data (discussed by Chatfield
and Prothero (1973) and Newton (1988, 233), and included with this insert as sales.dta). If we denote the data by X1; : : : ; Xn

(with n = 77 for the sales data), we seek a value of the exponent � giving us a transformed data set (with constant variance
across time) Y1; : : : ; Yn by

Yt =

(
X�

t
� 6= 0

log(Xt) � = 0

Using such a power transform for stabilizing variance is a standard initial step in many methods of time series analysis; see Box
and Jenkins (1970), for example.

In Figure 1, we see a dialog box labeled “Time series power transform” as well as a Stata Graph window with the plot of
original sales data (except that it has been standardized to be in the interval [0; 1] by subtracting its minimum value and dividing
by its range, a practice we do throughout this insert so that series for different values of � are comparable).

We have resized the Stata window and the Graph window so that both the dialog box and Graph window are visible. We
have also made the foreground color black and the background color white in the graphics window so that Figure 1 would show
up well when printed.
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Figure 1. Dialog box for time series power transform (lambda = 1).

The dialog box has list boxes for the user to choose the data and time variables (the user is expected to input the data prior
to using ptransdb). The user can then try a value of � by choosing a value in the list box labeled “lambda” (for simplicity the
choices range from zero to one in steps of 0.05) and then clicking on the button labeled “lambda” (when ptransdb begins it
uses the value one so that the standardized original data is plotted).

Alternatively, one can rapidly increase or decrease the value of � by clicking on the buttons labeled “lambda+” and
“lambda�”, respectively. Each time such a click is done, the graphics window displays the new standardized transformed data
set. This allows a user to almost animate the graphs of the successive power transforms (unfortunately one must actually click
to get each graph, thus slowing down the animation).

Note that the standardization is important here as it keeps the vertical axis from changing which would disturb the visual
impression of smoothly changing the value of �. Clicking on the button labeled “exit” ends ptransdb and control of Stata is
returned to the command line.

In Figure 2, we display the result of using � = 0.25, that is, the fourth root transform recommended by Chatfield and
Prothero for these data. Notice that the value of � is inserted into the caption above each graph as is a number called “RMSE”.
This is the root mean square error in regressing the standardized transformed data on the sum of a linear trend and a cosine plus
sine of period 12.

For the sales data the value of � minimizing this variance is arguably the best value to stabilize variance across time.
Except for this number, ptransdb can be used for any time series. In our discussion below of how to write a program such as
ptransdb, we show how this regression can be easily removed from the program.
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Figure 2. Dialog box for time series power transform (lambda = 0.25).

Writing programs using dialog boxes to vary parameters

In this section, we present an annotated version of the file ptransdb.ado containing the ptransdb program. See [R] window
control for complete details on the elements of Stata dialog boxes.

First we define the program and get the current list of variables into the global variable DB var:

program define ptransdb

version 5.0

local varlist opt

parse "`*'"

global DB_var "`varlist'"

Next we use Stata’s window control ssimple command to define the three list boxes in the dialog box:

global DB_one "Data variable:"

window control static DB_one 10 10 50 9

global DB_data " "

window control ssimple DB_var 10 20 50 50 DB_data

global DB_two "Time variable:"

window control static DB_two 70 10 50 9

global DB_time " "

window control ssimple DB_var 70 20 50 50 DB_time

global DB_l "lambda:"

window control static DB_l 70 80 50 9

global DB_lams "0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60"

global DB_lams "$DB_lams .65 .70 .75 .80 .85 .90 .95 1"

global DB_lam "1"

window control ssimple DB_lams 70 90 50 60 DB_lam

Now place the four buttons used in the dialog box and define the global macros used to hold the actions to take for each button
(note that the actions for all but “exit” are to call the program bcdr defined below):
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window control button "lambda" 5 100 40 10 DB_lc

window control button "lambda+" 5 115 40 10 DB_lp

window control button "lambda-" 5 130 40 10 DB_lm

window control button "exit" 5 145 40 10 DB_ex

global DB_lc "bcdr 0"

global DB_lp "bcdr 1"

global DB_lm "bcdr -1"

global DB_ex "exit 3000"

Finally, issue the command wdlg that actually forms the dialog box:

wdlg "Time series power transform" 10 10 140 170

end

Another program, bcdr, does the actual calculation and graphing. Note that bcdr has one argument which can be �1 for
“lambda�,” +1 for “lambda+,” and 0 for “lambda.” Since it is called only by ptransdb, we need not worry about checking
arguments or any of the usual programming problems.

program define bcdr

version 5.0

local arg `1'

Now get the data variable and time variable into the tempvar’s x and t and update the value of �:

tempvar x t

gen `x' = $DB_data

gen `t' = $DB_time

if `arg' == -1 { global DB_lam = max(0,$DB_lam-.025)}

if `arg' == 1 { global DB_lam = min(1,$DB_lam+.025)}

Next do the called-for transform and do the standardizing:

if $DB_lam == 0 { replace `x'=log(`x')}

else { replace `x'=`x'^$DB_lam}

sum `x'

replace `x' = (`x'-_result(5))/(_result(6)-_result(5))

This section does the regression and can be easily removed:

tempvar cs sn

gen `cs' = cos(2*_pi*_n/12)

gen `sn' = sin(2*_pi*_n/12)

regress `x' `t' `cs' `sn'

local s2 : display %9.4f _result(9)

Now do the graph, noting that to remove the regression, one need only change the argument of the t1 option in graph:

local lam : display %5.3f $DB_lam

label var `x' " "

label var `t' " "

graph `x' `t', xlab ylab c(l) /*

*/ t1("Power transform (lambda=`lam', RMSE=`s2')")

end
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sbe13.2 Correction to age-specific reference intervals (“normal ranges”)

Eileen Wright, Royal Postgraduate Medical School, UK, ewright@rpms.ac.uk
Patrick Royston, Royal Postgraduate Medical School, UK, proyston@rpms.ac.uk

We have discovered that our routine, xriml, for calculating age-specific reference intervals (Wright and Royston, 1997) has
an error in the estimation of the standard errors of centiles (option se) when used in conjunction with modeling the coefficient of
variation (option cv). Confidence limits based on this routine are too narrow. An amended version is available with this edition
of STB. xriml is correct in all other respects.

Reference

Wright, E. and P. Royston. 1997. sbe13: Age-specific reference intervals (“normal ranges”). Stata Technical Bulletin 34: 24–34.

sbe14 Odds ratios and confidence intervals for logistic regression models with effect modification

Joanne M. Garrett, University of North Carolina at Chapel Hill, FAX (919) 966-2274, garrettj@med.unc.edu

This insert describes effmod, an easy-to-use program for anyone who dislikes having to hand calculate odds ratios and
confidence intervals for logistic regression models with significant interaction terms, or, even worse, have to explain to students
how to do it. After years of teaching non-statistician medical researchers how to use logistic regression, and watching their eyes
glaze over when I got to the formula for calculating the variance estimate for a linear combination of betas, I decided to make
life easier on all of us and write a program that automates the process.

After writing effmod, I discovered the lincom command in Stata 5.0, which will also display odds ratios and confidence
intervals (see [R] lincom in the Stata Reference Manual). lincom and effmod produce the same results, but they differ in their
syntax. lincom requires you to specify the appropriate linear combinations of the estimators; effmod uses a syntax based on
descriptive terms familiar to anyone who has studied epidemiology.

Which program is better depends entirely on user preference. effmod is geared toward a non-mathematically inclined
audience and has the advantage of being specified and displayed using epidemiological terminology, with a summary of the
variables and stratum-specific values used for the odds ratios. However, lincom can be explained in similar terms, and, if
specified appropriately, is simple to use. Following each example in this insert I will include the statement needed to duplicate
the results using lincom. However, remember that lincom must follow the estimation of a model.

Background

The general form for the calculation of the odds ratio from the estimates of the logistic regression model is

ORX�;X = exp
�P

�i(X
�

i
�Xi)

�
where X� and X represent values for one group and a comparison group, respectively.

In many epidemiologic studies, the focus is on one main study factor (“exposure”) which frequently is coded as 1 for
“exposed” and 0 for “unexposed”. For instance, suppose X1 were the exposure variable:

Exposure Status

#
Let X� = (1; X2; X3; : : : ; Xk)

X = (0; X2; X3; : : : ; Xk)

Then
OR = exp (�1(1� 0) + �2(X

�

2
�X2) + � � �+ �k(X

�

k
�Xk)) = e

�1

Our fairly complicated odds ratio formula reduces to a simple exponentiation of the beta coefficient for the “exposure”
variable (which Stata is kind enough to present for us on the logistic output).

The formula for the 95% confidence interval (which Stata also calculates and prints for us) is

exp(�1 � 1:96(s:e:�1))

Had the exposure variable been coded as something other than 1 and 0, we would need to multiply the beta coefficient
by the difference that we want to compare before exponentiating. For instance, suppose age in years was our “exposure.” If we



16 Stata Technical Bulletin [STB-36]

exponentiate beta (or use the odds ratio calculation we find on the printout), we are looking at the odds ratio for a one year
change in age, e.g., a 39 year-old versus a 38 year-old. It might be more informative to report a 10-year difference in age, say
comparing a 50 year-old to a 40 year-old. Our odds ratio and 95% confidence interval formulas then become

OR = exp(�1(50� 40)) = e
10�1 95% CI = exp(�1(10)� 1:96(s:e:�1)(10))

Note that one multiplies the standard error in the confidence interval formula by the same multiple used for beta. A dead giveaway
that someone has forgotten to do so is a tiny confidence interval around a reasonable sized odds ratio.

This is still fairly straightforward. However, things start getting messy when there is significant effect modification, which
is the epidemiologists’ term for interaction between the exposure and another variable—the effect modifier. What we are saying
is the odds ratio changes depending on the value of the effect modifier or effect modifiers. In essence, we are stratifying our odds
ratio by categories of the effect modifiers. The general formula for the odds ratio reduces, but any terms which include interactions
with the exposure variable remain. For example, suppose we are interested in the odds ratio of developing coronary heart disease
(yes chd= 1; no chd= 0) for people with hypertension (hpt= 1) versus people with normal blood pressure (hpt= 0), and we
find there is significant interaction between hypertension and age, as well as hypertension and sex. The logistic model (written
in the log odds form) might look like this:

logitPr(chd = 1jXi) = �+ �1(hpt) + �2(age) + �3(sex) + �4(hpt� age) + �5(hpt� sex)

The formula for the odds ratio with the two interaction terms would be

OR = exp(�1(1� 0) + �4(1� 0)(age) + �5(1� 0)(sex)) = exp(�1 + �4(age) + �5(sex))

Next we would substitute values of age and sex and use the estimated betas to solve the equation to get odds ratios for the
hpt–chd comparison. For example, we might want the hpt–chd odds ratio for 50 year-old males, or for 60 year-old females.

Okay so far, but what about the confidence intervals for these odds ratios? Many journals are requiring confidence intervals
rather than p-values when we report odds ratios, and now we need separate confidence intervals for each odds ratio (we may
have several odds ratios representing the categories of our effect modifiers). Not only do we need more confidence intervals,
the variance estimate for the formula no longer is the simple variance of a single beta. It’s now a more complicated formula
for a linear combination of betas. The general form for the 95% confidence interval (with interaction) is exp(l � 1:96

p
Var(l))

where l =
P

k

i=1
aiYi and

Var(l) =

kX
i=1

a
2

i
Var(Yi) + 2

X
i<j

aiajCov(Yi; Yj)

The good news is the terms involving variables other than the exposure and the effect modifiers drop out of this equation.
Additionally, if the exposure is coded as 1 and 0, the equations for l and Var(l) become

l = � +

kX
j=1

�jMj

Var(l) = Var(�) +

kX
j=1

M
2

j
Var(�j) + 2

kX
j=1

MjCov(�; �j) + 2
X
j<j0

MjMj0Cov(�j ; �j0)

where � = beta for the exposure variable, �j = betas for the j (up to k) interaction terms, and Mj = values for the j effect
modifiers.

For the 2 interaction term example (hpt � age and hpt � sex), we would have

l = �1 + �4(age) + �5(sex)

Var(l) = Var(�1) + (age)2Var(�4) + (sex)2Var(�5) + 2(age)Cov(�1; �4)

+ 2(sex)Cov(�1; �5) + 2(age)(sex)Cov(�4; �5)
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Now we pick off the appropriate estimates from the variance–covariance matrix, substitute in a value for age and sex, and
solve the equation. All this just to get one of the confidence intervals for one odds ratio. We must repeat the calculation for
other combinations of age and sex. Of course, if we had started with only one interaction term (rather than two), the variance
estimate would reduce quite a bit (to 3 terms). Additionally, had the single effect modifier been a dichotomous 0–1 variable, the
equation would reduce further to the familiar e�1 for the 0 category. Would you still rather not be bothered? Then effmod will
help.

Description

effmod calculates user specified stratum-specific odds ratios and confidence intervals for logistic regression models which
include interaction terms between an exposure and effect modifiers. If the model has been specified previously or effmod is
repeated with new stratum values, the current model estimates are used; otherwise a new model is fit.

Syntax

effmod dvar evar
�
if exp

�
, covariate(cov list) interact(interaction #)�

ediff(#) model level(#)
�

dvar is the “disease” variable (dichotomous outcome) and should be coded as 1 and 0.

evar is the “exposure” variable and can be nominal, ordinal, interval, or continuous.

Options required

covariate(cov list) is the list of confounders in the model.

interact(interaction #) is the list of interaction variables in the model plus a stratum value for each effect modifier; for more
than one interaction term, the form is interact(interaction1 # interaction2 # : : : ).

For example, suppose there are two interactions represented by the variables hptxsex (hypertension by sex, where sex=1
for males and sex=0 for females) and hptxage (hypertension by age). To calculate the odds ratio and 95% CI for 60 year-old
males, specify

interact(hptxsex 1 hptxage 60)

and for 60 year-old females

interact(hptxsex 0 hptxage 60)

and so on.

Options allowed

ediff(#) is the difference of values for “exposed” versus “unexposed.” For example, to compare age= 50 versus age= 40, ediff
would be specified as: ediff(10). The default for ediff is 1, which is equivalent to exposed= 1 versus unexposed= 0.

model displays the logistic regression table.

level(#) specifies the confidence level in percent for the confidence intervals. The default is a 95% confidence interval.

Examples

The set of examples to illustrate effmod come from a case–control study (Garrett et al. 1993) of the relationship between
the “exposure”—a rare form of a gene (hras, for those readers familiar with genetics) and the “disease”—incidence of breast
cancer (brcancer). (I apologize in advance to the author of this study for taking liberties with the data to illustrate some points,
but, since the author is related to me, I hope he won’t mind.) The data are stored in hras.dta. Several of the variables with
their descriptions and coding are in the following table:
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Variable Definition Coding

brcancer Breast cancer diagnosis 1 = case
(“outcome”) 0 = control

hras Type of gene 1 = rare form of hras
(“exposure”) 0 = common form

race Race of patient 1 = black women
0 = white women

bmi Body mass index—a continuous (higher #s
measure of obesity mean heavier)

pabiopsy Past history of breast 1 = yes
biopsy 0 = no

menopaus Has been through 1 = post-menopause
menopause 0 = pre-menopause

In addition, there are interaction terms between hras and race (hrasxrac), hras and bmi (hrasxbmi), and bmi and menopaus

(bmixmeno).

In the first example, effmod calculates the odds ratio and 95% confidence interval for rare hras and breast cancer with one
interaction term between hras and race (hrasxrac) for black women (race= 1), controlling for race, bmi, and pabiopsy. It
requests that the logistic regression table be printed (model), and accepts the default for ediff (1) since “exposed” (hras= 1)
minus “unexposed” (hras= 0) equals 1. The model is

logitPr(brcancer = 1) = �+ �1(hras) + �2(race) + �3(bmi) + �4(pabiopsy) + �5(hrasxrac)

With the commands

. logistic brcancer hras race bmi pabiopsy hrasxrac

. lincom hras + hrasxrac

logistic will fit the model and produce the usual table of odds ratios and confidence intervals for the odds ratios and lincom

will produce:

( 1) hras + hrasxrac = 0.0

------------------------------------------------------------------------------

brcancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

(1) | 4.20202 2.343971 2.574 0.010 1.408123 12.53936

------------------------------------------------------------------------------

Using effmod gets the results of both logistic and lincom using a syntax my non-statistician students like:

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 1) model

Logit Estimates Number of obs = 706

chi2(5) = 74.52

Prob > chi2 = 0.0000

Log Likelihood = -447.32742 Pseudo R2 = 0.0769

------------------------------------------------------------------------------

brcancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hras | 1.15649 .5195732 0.324 0.746 .4794298 2.789709

race | .5881098 .1808482 -1.726 0.084 .32189 1.074507

bmi | 1.056875 .0169562 3.448 0.001 1.024159 1.090637

pabiopsy | 3.21892 .5240456 7.181 0.000 2.339554 4.428812

hrasxrac | 3.633424 2.605469 1.799 0.072 .8911144 14.8149

------------------------------------------------------------------------------

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras
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Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 1

Exposed-Unexposed= 1

l= 1.4355653

Var(l)= .31116333

Odds Ratio (95% CI) for brcancer vs. hras: 4.202 (1.408, 12.539)

Following the model results, effmod reports a summary table of information (a way to check to make sure the variables
were specified as expected, particularly if the model is not printed), including “l”, the variance of “l”, and the final odds ratio
and confidence interval for the stratum requested. In this case, the stratum for black women is specified as “hrasxrac 1.” The
odds ratio tells us that black women with the rare form of the hras gene are 4.2 times as likely to develop breast cancer as black
women with the common form of the gene. The 95% confidence interval (1.4 to 12.5) does not include 1.0 (which would mean
no association), thus, the odds ratio is statistically significant.

Now, let’s repeat the example for white women (“hrasxrac 0”):

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 0)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras

Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 0

Exposed-Unexposed= 1

l= .14538979

Var(l)= .20184104

Odds Ratio (95% CI) for brcancer vs. hras: 1.156 (0.479, 2.790)

The corresponding lincom command is

. lincom hras

This time the odds ratio tells us that among white women there is no association between having the rare form of hras and
breast cancer—the odds ratio is close to 1.0 and the confidence interval includes 1.0, meaning it is nonsignificant. There was
no need to print the model again since the estimates did not change from the previous example.

For the next examples, let’s suppose that in addition to the hras and race interaction, we think there is interaction
between hras and bmi (hrasxbmi). Again, race is dichotomous, specified as 0 (white women) or 1 (black women), but bmi is
continuous, so we must select some values of bmi for our strata. I have selected bmi= 23 (a normal value for body mass index
for women) and bmi= 28 (getting rather zaftig—for non-New Yorkers, that means “plump”). Four examples of effmod with
two interaction terms follow:

race = 1 and bmi = 23

race = 1 and bmi = 28

race = 0 and bmi = 23

race = 0 and bmi = 28

For the first example, we have

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 1 hrasxbmi 23) model

Logit Estimates Number of obs = 706

chi2(6) = 77.91

Prob > chi2 = 0.0000

Log Likelihood = -445.63177 Pseudo R2 = 0.0804

------------------------------------------------------------------------------

brcancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

hras | 12.40228 16.86845 1.851 0.064 .8625319 178.3316

race | .5529998 .1725018 -1.899 0.058 .3000562 1.019172

bmi | 1.067554 .01819 3.836 0.000 1.032491 1.103807

pabiopsy | 3.242319 .5297073 7.200 0.000 2.353924 4.466004

hrasxrac | 5.728345 4.340338 2.304 0.021 1.297412 25.29183

hrasxbmi | .9100992 .0460674 -1.861 0.063 .8241431 1.00502

------------------------------------------------------------------------------
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OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras

Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 1

hrasxbmi: 23

Exposed-Unexposed= 1

l= 2.0966696

Var(l)= .45142941

Odds Ratio (95% CI) for brcancer vs. hras: 8.139 (2.181, 30.373)

We see from the model that both interactions are statistically significant, or nearly so. But are the individual stratum-specific
odds ratios significant? Black women with a normal value (23) for body mass index are 8.1 times as likely to develop breast
cancer if they have the rare form of hras. The confidence interval (2.18 to 30.37) does not include 1.0, thus the odds ratio is
significant.

For race= 1 and bmi= 28:

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 1 hrasxbmi 28)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras

Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 1

hrasxbmi: 28

Exposed-Unexposed= 1

l= 1.6256615

Var(l)= .32253505

Odds Ratio (95% CI) for brcancer vs. hras: 5.082 (1.670, 15.468)

Black women with a high value (28) for body mass index are 5.1 times as likely to develop breast cancer if they have the rare
form of hras. The odds ratio is significant.

For race= 0 and bmi= 23:

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 0 hrasxbmi 23)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras

Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 0

hrasxbmi: 23

Exposed-Unexposed= 1

l= .35124306

Var(l)= .21327909

Odds Ratio (95% CI) for brcancer vs. hras: 1.421 (0.575, 3.513)

White women with a normal value (23) for bmi are 1.4 times as likely to develop breast cancer if they have rare hras, but the
odds ratio is not significant.

For race= 0 and bmi= 28:

. effmod brcancer hras, cov(race bmi pabiopsy) int(hrasxrac 0 hrasxbmi 28)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: hras

Confounders: race bmi pabiopsy

Interaction Terms and Stratum Values:

hrasxrac: 0

hrasxbmi: 28
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Exposed-Unexposed= 1

l= -.11976513

Var(l)= .21619827

Odds Ratio (95% CI) for brcancer vs. hras: 0.887 (0.357, 2.207)

White women with a high value (28) for bmi are no more likely to develop breast cancer if they have the rare form of hras.

The equivalent lincom commands for the previous four examples are

. lincom hras + hrasxrac + 23*hrasxbmi

. lincom hras + hrasxrac + 28*hrasxbmi

. lincom hras + 23*hrasxbmi

. lincom hras + 28*hrasxbmi

Finally, let’s look at some examples where the “exposure” is continuous, rather than a 0–1 dichotomous variable. Suppose
bmi is our exposure variable, i.e., we are interested in the relationship between body mass index and breast cancer. And, we
discover that there is effect modification between bmi and menopause status (post-menopause: menopaus= 1 and pre-menopause:
menopaus= 0—don’t ask what happened to the group of women experiencing menopause—for sake of illustration, let’s assume
that menopause is an instantaneous event). We’ll keep the model simple, and look only at the outcome of breast cancer with
bmi, menopaus, and the bmi by menopaus interaction (bmixmeno). First, let’s compare odds ratios for a one-unit change in
bmi, stratified by post-menopausal women, and then stratified by pre-menopausal women.

. effmod brcancer bmi, cov(menopaus) int(bmixmeno 1) model

Logit Estimates Number of obs = 700

chi2(3) = 17.78

Prob > chi2 = 0.0005

Log Likelihood = -470.76854 Pseudo R2 = 0.0185

------------------------------------------------------------------------------

brcancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+--------------------------------------------------------------------

bmi | 1.026446 .0182239 1.470 0.142 .9913416 1.062793

menopaus | .2501185 .2093135 -1.656 0.098 .0485078 1.289675

bmixmeno | 1.06519 .0339957 1.979 0.048 1.000601 1.133948

------------------------------------------------------------------------------

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: bmi

Confounders: menopaus

Interaction Terms and Stratum Values:

bmixmeno: 1

Exposed-Unexposed= 1

l= .08925487

Var(l)= .00070336

Odds Ratio (95% CI) for brcancer vs. bmi: 1.093 (1.038, 1.152)

The corresponding lincom command is

. lincom bmi + bmixmeno

Thus, among post-menopausal women, there is a significant increase in breast cancer with increasing bmi (the confidence interval
does not include 1.0). However, since we are looking at a one-unit change in bmi, at first glance we might conclude erroneously
that an odds ratio as small as 1.09 implies body mass index doesn’t have much to do with breast cancer incidence.

Next, we look at

. effmod brcancer bmi, cov(menopaus) int(bmixmeno 0)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: bmi

Confounders: menopaus

Interaction Terms and Stratum Values:

bmixmeno: 0

Exposed-Unexposed= 1
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l= .02610197

Var(l)= .00031522

Odds Ratio (95% CI) for brcancer vs. bmi: 1.026 (0.991, 1.063)

with corresponding lincom command

. lincom bmi

which shows that among pre-menopausal women, there is no evidence of increase in breast cancer with increasing bmi (the
confidence interval includes 1.0)

To make our odds ratios look a little more substantive, we can use the ediff(#) option to calculate the odds ratio for a
larger change in bmi. For instance, the next two examples repeat the previous two, using a 10 point difference on the bmi scale.
The two lincom commands are

. lincom 10*bmi + 10*bmixmeno

. lincom 10*bmi

Now effmod for the first of these two example:

. effmod brcancer bmi, cov(menopaus) int(bmixmeno 1) ediff(10)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: bmi

Confounders: menopaus

Interaction Terms and Stratum Values:

bmixmeno: 1

Exposed-Unexposed= 10 (shows the difference in bmi)

l= .89254874

Var(l)= .00070336

Odds Ratio (95% CI) for brcancer vs. bmi: 2.441 (1.452, 4.106)

This shows us that we can say that post-menopausal women are 2.4 times as likely to develop breast cancer with a 10 point
increase in bmi. Again, we conclude this odds ratio is significant. If the relationship is significant for a one-unit change in bmi,
it will be for a 10-unit change (or 1000-unit change, for that matter—I once had a journal reviewer tell me that since the
confidence interval was so close to 1.0 for a one-unit change of a continuous effect modifier, it was sure to cross 1.0 if I tried
to look at a 10-unit change).

For the second example of using ediff we have

. effmod brcancer bmi, cov(menopaus) int(bmixmeno 0) ediff(10)

OR and 95% CI for a Logistic Regression Model with Interaction

--------------------------------------------------------------

Disease: brcancer

Exposure: bmi

Confounders: menopaus

Interaction Terms and Stratum Values:

bmixmeno: 0

Exposed-Unexposed= 10

l= .26101966

Var(l)= .00031522

Odds Ratio (95% CI) for brcancer vs. bmi: 1.298 (0.917, 1.839)

Although the odds ratio for a 10-unit change in bmi is slightly larger than the example where we did not use ediff(10),
as expected, the confidence interval remains nonsignificant. Among pre-menopausal women, there is no significant relationship
between body mass index and breast cancer.
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sg67 Univariate summaries with boxplots

John R. Gleason, Syracuse University, 73241.717@compuserve.com

Univariate summaries (means, standard deviations, etc.) are perhaps the quantities most often examined during data analysis.
This is partly because these summaries serve so many purposes, for example, to familiarize oneself with the data, to aid in
understanding other computations, or to act as canonical data descriptors in written reports.

Stata’s summarize command provides the components of a univariate summary, but its presentation is not always ideal for
the purpose at hand. For instance, summarize varlist displays the mean, standard deviation, minimum, and maximum of a set of
variables in a left-to-right fashion that allows many such sets of results to be viewed at once. But one might wish to describe each
variable by its five-number summary (minimum, 25th percentile, median, 75th percentile, and maximum). summarize varlist,
detail will compute the required values (along with many others), but present them in a style that consumes about 15 lines of
output for each variable.

As another example, summarize typically shows the mean and standard deviation in a g format that displays 7 significant
digits. This can be desirable, but not when the goal is to extract, visually, or by cut-and-paste, the means and standard deviations
of several variables for inclusion in a written report; then, one might prefer those values to be aligned on their decimal points,
followed by a small, fixed number of decimal places.

Of course, there are several other ways of displaying univariate summaries in Stata. For example, the table command
(new in Stata 5.0) provides very general and flexible formatting of tables of summaries, though it is not especially convenient for
interactive data analysis. This insert presents a new command (univar) that offers a streamlined display of univariate summaries
including, optionally, text-mode boxplots.

Syntax

univar varlist
�
weight

� �
if exp

� �
in range

� �
, boxplot byvar(bylist) dec(#) fmt(f f j g g) lstwise se

�

As with summarize, aweights and fweights are allowed.

Before explaining the options, we first demonstrate the default behavior of univar using the data set kcal.dta supplied
by Clayton and Hills (1995):

. use kcal, replace

Heart disease and diet survey

. univar toteng height weight

-------------- Quantiles --------------

Variable n Mean S.D. Min .25 Mdn .75 Max

-------------------------------------------------------------------------------

toteng 337 2828.87 441.75 1748.43 2536.69 2802.98 3109.66 4395.75

height 332 173.36 6.41 152.40 168.91 172.97 177.80 190.50

weight 333 72.40 11.28 10.43 64.64 72.80 79.83 106.14

-------------------------------------------------------------------------------

By contrast, the default response of summarize is

. summarize toteng height weight

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

toteng | 337 2828.872 441.7528 1748.43 4395.75

height | 332 173.3642 6.409235 152.4 190.5

weight | 333 72.39953 11.2766 10.43273 106.1417

Two differences are apparent: univar shows the complete five-number summary in horizontal style, and prints results in f

rather than g format. The latter choice displays the values aligned on their decimal points with a fixed number of decimal places,
the conventional style of presenting numbers in text. The former choice permits a more compact and intuitive presentation of
five-number summaries than the detail option of summarize:
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. summarize toteng, detail

total energy (kcals/day)

-------------------------------------------------------------

Percentiles Smallest

1% 1876.13 1748.43

5% 2168.86 1854.02

10% 2311.24 1858.8 Obs 337

25% 2536.69 1876.13 Sum of Wgt. 337

50% 2802.98 Mean 2828.872

Largest Std. Dev. 441.7528

75% 3109.66 4063.02

90% 3366.61 4234.06 Variance 195145.5

95% 3595.05 4256.81 Skewness .4430436

99% 4063.02 4395.75 Kurtosis 3.506768

Options

boxplot draws a text-mode boxplot for each varlist variable. Stata can, of course, draw boxplots using the graph command,
but a somewhat coarser boxplot built of text characters can still be helpful, especially if displayed beside the numerical
values being portrayed.

byvar(bylist) requests summaries at each unique set of values of the variables in bylist, which is analogous to attaching the by

bylist: prefix to the summarize command.

dec(#) controls the number of decimal places used to display the summary values; for example, dec(4) switches to %8.4f

format. By default, univar uses %8.2f format to display all values except the number of observations n.

fmt chooses between f and g output formats; for example, supplying the options dec(0) and fmt(g) chooses the format %8.0g
for the summary values, a style similar to the default output of summarize.

lstwise requests listwise deletion of missing values (an observation is ignored if any of the varlist variables is missing); the
default is to use all available observations for each variable (variable-wise deletion).

se requests that the standard error of the mean (s=
p
n) be printed in place of the sample standard deviation (s).

Examples

To illustrate, we continue looking at the data in kcal.dta:

. univar toteng height weight, box by(job loweng)

-> job=0 loweng=0

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

-------------------------------------------------------------------------------

-----:::::::::::|::::::::::------------------------------------------

toteng 54 3155.26 343.26 2755.00 2873.95 3114.83 3336.00 4256.81

--------------------------:::::::::::::|:::::::----------------------

height 54 172.28 5.36 157.73 167.89 172.72 175.51 184.15

-----------::::::::::::::::|::::::-----------------------------------

weight 54 73.91 9.95 57.20 64.64 75.18 78.70 101.83

-------------------------------------------------------------------------------

(output for four bygroups omitted)

-> job=2 loweng=1

----------:::::::::|:::::::::----------

Variable n Mean S.D. Min .25 Mdn .75 Max

-------------------------------------------------------------------------------

------------------------------------------::::::::::|::::::::--------

toteng 68 2463.41 225.89 1748.43 2365.93 2512.83 2631.58 2749.70

----------------------------------::::::::|:::::::-------------------

height 64 175.77 7.43 153.67 172.08 176.53 180.34 190.50

----------------------------------------::::|:::::-------------------

weight 64 72.96 13.17 10.43 66.68 72.92 79.22 106.14

-------------------------------------------------------------------------------

The above command produces a summary for each of the six combinations of job and loweng, and draws a boxplot for each
five-number summary calculated. The boxplots map the range of each variable onto a fixed width in the output; the median is
drawn with the character “|”, the remainder of the box with “:”, and the whiskers with “-”. univar also draws a glyph at the
top of each summary table to serve as a reminder of this representation.



Stata Technical Bulletin 25

Adding the se and lstwise options then gives this result:

. univar toteng height weight, box by(j low) lst se

-> job=0 loweng=0

----------:::::::::|:::::::::----------

Variable n Mean S.E. Min .25 Mdn .75 Max

-------------------------------------------------------------------------------

-----:::::::::::|::::::::::------------------------------------------

toteng 54 3155.26 46.71 2755.00 2873.95 3114.83 3336.00 4256.81

--------------------------:::::::::::::|:::::::----------------------

height 54 172.28 0.73 157.73 167.89 172.72 175.51 184.15

-----------::::::::::::::::|::::::-----------------------------------

weight 54 73.91 1.35 57.20 64.64 75.18 78.70 101.83

-------------------------------------------------------------------------------

(output for four bygroups omitted)

-> job=2 loweng=1

----------:::::::::|:::::::::----------

Variable n Mean S.E. Min .25 Mdn .75 Max

-------------------------------------------------------------------------------

------------------------------------------::::::::::|::::::::--------

toteng 64 2467.44 28.62 1748.43 2372.61 2516.92 2631.58 2749.70

----------------------------------::::::::|:::::::-------------------

height 64 175.77 0.93 153.67 172.08 176.53 180.34 190.50

----------------------------------------::::|:::::-------------------

weight 64 72.96 1.65 10.43 66.68 72.92 79.22 106.14

-------------------------------------------------------------------------------

Remarks

1. The byvar option differs from the by: prefix available to summarize in that the data need not be sorted by the bylist
variables; univar sorts the data as necessary and then restores the original ordering before exiting. In addition, the byvar

option may be combined with an in clause, whereas the by: prefix may not.

2. However, univar uses the by: prefix to implement the byvar option. Hence, the bylist can have at most ten variables,
which may be of either numeric or string type, and may include missing values or null strings.

3. univar runs on Stata Version 4.0, but Version 5.0 or newer is required to display value labels for bylist variables.

4. univar’s output is 79 characters wide, the same width used by Stata’s .hlp files.

5. The characters “|”, “:”, and “-” will produce reasonable boxplots in most fixed pitch fonts. However, these characters are
set by local macros at the top of the file univar.ado, and are easily redefined, if desired. A similar comment applies to
the color used to draw the boxplots.
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sg68 Goodness-of-fit statistics for multinomial distributions

Jeroen Weesie, Utrecht University, Netherlands, weesie@weesie.fsw.ruu.nl

This insert describes a command gof that computes goodness-of-fit statistics for multinomial distributed observations (obs)
and expected values (exp). The expected values may be derived from an estimated model for the multinomial probability
distribution, e.g., a loglinear model, or be strictly theoretical. The gof-statistics are the members of the 1-parameter Cressie–Read
family (1984, 1988) CR(obs; exp; �) of discrepancy measures,

CR(obs; exp; �) =
2

�(�+ 1)

X
obs[(obs=exp)� � 1]

where the summation is over all “cells,” i.e., the “response categories” of the multinomial distribution.

The Cressie–Read family contains many well known goodness-of-fit statistics as special cases. For instance, Pearson’s �2,

�
2 =

X
(obs� exp)2=exp

belongs to the Cressie–Read family with � = 1. The deviance or likelihood-ratio statistic LR,

LR = 2
X

obs� log(obs=exp)

is embedded in the Cressie–Read family as the (continuous) limiting value in � = 0. Other measures such as Freeman–Tukey’s
statistic (� = �1=2), the Kullback–Leibler information distance (entropy) (� = �1), and Neyman’s modified �2 (� = �2; note
that in modern terminology we would refer to Neyman’s �2 as a Wald statistic) are similarly special cases of the general form.
Finally, Cressie and Read’s recommended statistic (� = 2=3) is obviously a member of the family.

If the expected values (exp) are true or at least efficiently estimated, all members of the CR family are asymptotically
(central) �2 distributed. Under standard regularity conditions, the degrees of freedom of CR( : ; : ; �) can be expressed as “the
number of cells � 1” for theoretical expected values and “the number of cells � 1 � the number of imposed restrictions” for
estimated expected values. Thus, all CR statistics are first-order efficient. Based on a.o. higher-order asymptotic developments
and Monte Carlo experimentation, Cressie and Read (1988) recommend the application of a nonstandard statistic, CR( : ; : ; 2

3
).

Syntax

The syntax of gof is

gof obs exp
�
if exp

� �
in range

� �
, x2 cr g2 lr ft kl x2n lambda(numeric list)

by(varlist) df(#) list n(#) plot scale saving(filename)
�

Note: The lambda() option requires the numlist program which must be installed from the ip14 directory of the STB 35 disk
(January 1997).

Options to select lambda

x2 cr g2 lr ft kl x2n specify the members of the Cressie–Read family to be displayed (g2 and lr are synonymous). More
than one of these options may be specified. Formally,

� description abbreviation formula

1:0 Pearson’s �2 x2
P
(obs� exp)2=exp

2=3 C & R’s recommended statistic cr
9

5

P
obs((obs=exp)2=3 � 1)

0:0 log-likelihood ratio (deviance) lr or g2 2
P

obs� log(obs=exp)

�0:5 Freeman–Tukey’s statistic ft 4
P
(
p
obs�p

exp)2

�1:0 Kullback–Leibler information kl 2
P

exp� log(exp=obs)

�2:0 Neyman’s modified �2 x2n
P
(obs� exp)2=obs
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lambda(numeric lists) specifies a range of powers for the Cressie–Read statistics. See on-line help for numlist (Weesie 1997)
for the definition of numeric lists. Note that numlist must be installed separately for this option to work.

Specifying none of these options implies all of x2 cr lr ft x2n, or, stated differently, it is the same as specifying lambda(-2

-1 -.5 0 .667 1).

Other options

by(varlist) specifies a list of variables on which to aggregate obs and exp (join “cells” with the same values on varlist) before
computing goodness-of-fit statistics.

df(#) specifies the degrees of freedom used in the computations of chi-squared-based approximate significance levels.

list specifies that the table with statistic values is displayed. This option is effective only in combination with plot.

n(#) specifies that the variables obs and exp are expressed as proportions with the total number of observations equal to #.

plot specifies that a statistic-by-lambda plot is displayed. If df is specified, horizontal lines at the 90%, 95%, and 99% critical
values of the (central) chi-squared-distribution is shown.

scale specifies that the expected values may be scaled so that they sum to the number of observations. Otherwise obs and exp

should have equal sums (within a .001 multiplicative margin).

saving(filename) specifies the name of a file to save the statistic-by-lambda plot.

Examples

We have estimated a model with 8 parameters, including the constant, on the data in the accompanying file gof.dta.
The data are assumed to follow a multinomial distribution. In this case, we estimated a loglinear model in GLM. The data and
estimated expected counts and a variable region, to be used below, are

. list obs exp region

obs exp region

1. 7 2.484035 1

2. 10 10.51335 1

3. 11 12.43314 2

4. 10 12.9811 2

5. 17 14.66245 3

(output omitted)

39. 14 14.14302 20

40. 6 5.875558 20

The deviance (likelihood ratio statistic against the saturated model) can be obtained as

. gof obs exp, df(32) lr

Cressie-Read multinomial goodness-of-fit (32 df; 40 cells)

%cells(exp<1) = 0.075 %cells(exp<5) = 0.225

%cells(obs<1) = 0.000 %cells(obs<5) = 0.250

L( 0.00) LR = 37.945 p = 0.2166

Note that the output of gof contains the proportions of cells with low observed and expected counts.

To obtain the default list of statistics, we run

. gof obs exp, df(32)

Cressie-Read multinomial goodness-of-fit (32 df; 40 cells)

L(-2.00) Neyman's X2 = 53.612 p = 0.0097

L(-1.00) Kullback's KL = 40.671 p = 0.1399

L(-0.50) Freeman-Tukey = 38.436 p = 0.2009

L( 0.00) LR = 37.945 p = 0.2166

L( 0.67) Cressie-Read = 39.638 p = 0.1661

L( 1.00) Pearson's X2 = 41.535 p = 0.1206

Note that the p values of the statistics vary. Using Neyman’s �2 we would reject the model with expected values exp at any
significance level below 1%. With the other statistics, we would not reject the model. These conflicting conclusions are somewhat
disturbing. We are concerned that some of the conclusions that we want to draw are not very robust with respect to (1) auxiliary
assumptions, such as the link-function in a GLM model, or (2) arbitrary decisions, such as the selection of test-statistic in a class
with similar asymptotic properties with little known about small-sample properties. Of course, the program gof can be abused
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to shop around for a statistic that “proves” whatever we want to do. It is clear that such an application of gof has nothing to
do with good statistics or good science.

It is possible to collapse cells on a variable before computing the goodness-of-fit statistics with the by option. A relatively
high proportion of cells with low expected counts is often a reason to collapse cells. Note that you have to manually modify the
appropriate degrees of freedom.

. gof obs exp, df(12) by(reg)

Cressie-Read multinomial goodness-of-fit (12 df; 20/40 cells)

l(-2.00) Neyman's X2 = 17.302 p = 0.1386

l(-1.00) Kullback's KL = 16.954 p = 0.1513

l(-0.50) Freeman-Tukey = 16.910 p = 0.1530

l( 0.00) LR = 16.952 p = 0.1514

l( 0.67) Cressie-Read = 17.140 p = 0.1444

l( 1.00) Pearson's X2 = 17.292 p = 0.1389

Finally, it is often quite convenient to inspect the Cressie–Read family in a statistic-by-lambda plot. This plot, containing
the critical significance levels at 90%, 95% and 99%, is obtained via the plot option

. gof obs exp, df(32) lambda(-2.2-2.21/0.1) plot

Cressie-Read multinomial goodness-of-fit (32 df; 40 cells)

Cressie-Read goodness-of-f i t statistics (40 cells; 32 df))
(horizontal l ines at .90, .95 and .99 crit ical values)

g
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f

l ambda
-2 0 2
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Figure 1. Cressie–Read goodness-of-fit statistics.
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sg69 Immediate Mann–Whitney and binomial effect-size display

Richard Goldstein, Qualitas, Inc., Brighton, Mass., richgold@netcom.com

A perennial complaint of users of statistics is that the results are not “meaningful” in the real world. The two programs
presented here are the first of what will eventually be several inserts presenting translations from statistical tests to what may
be more meaningful indices.

The first index presented, the Mann–Whitney score, has previously been presented in ranksum2 (Goldstein 1994). The
presentation there was a simple reporting of part of what makes up the test. Here, we expand the use of the score to many other
tests, including pre-post studies, comparisons of proportions, matched-pairs t tests, and independent groups t tests. This statistic
is only presented as an immediate statistic, as it is meant to be used directly after some statistical test or procedure.

The interpretation of this score is that it shows the proportion of pairs in which cases of one type (e.g., one group such as
the experimental versus the control group, males versus females, etc.) that have a higher value for the dependent variable than
do cases of the other type. Pairs are simply defined as the number of people in group 1 times the number of people in group
2; for example, if there are 15 people in the experimental group and 19 in the control group, there are 285 = 15 � 19 pairs.
Then, a value of 0.27 means that in 27% of those 285 pairs, the member of the experimental group has more of something (e.g.,
dollars, pain, days in hospital, etc.) than does the member of the control group. It also means, for a randomly chosen pair, the
probability is 0.27 that the person from the experimental group will have a higher value on the dependent variable than will the
person from the control group. This value is the same as the area under the ROC curve as shown in ranksum2.

The second measure presented, the binomial effect-size display, translates the results of any correlation, chi-squared, t test,
or F test to a simple effect size.

Immediate Mann–Whitney Statistic

mwstati #1 #2

�
#3

� �
, pp proportion matched independent

�

gives the Mann–Whitney statistic (“probability that a randomly selected member of one group will have a better result than a
randomly selected member of the other group”) for the following cases.

Options

pp, pre-post studies, #2 is the total number of subjects in the study while #1 is the number of subjects who improved; thus, if
there were 30 subjects and 22 of them improved, the user would enter mwstati 22 30, pp.

proportion, comparisons of proportions, #1 is proportion of “treatment” group who improve, while #2 is proportion of
“control” group who improve; that is, enter, for each group, the proportion who had whatever event is of interest (whatever
the event is; e.g., promotion, termination, survival, remission, relapse, etc.); these proportions are easily available from
Stata’s tabulate command by asking for column or row percentages (whichever is appropriate in your setup); for example:
mwstati 15 18, proportion.

matched, matched pairs t tests, #1 is average difference, while #2 is standard deviation of differences; this information is
provided in the standard output from Stata’s ttest command.

independent, independent groups t tests, #1 is difference of means; #2 is variance for one group, while #3 is variance for
other group. Note that the above asks for variances, while the ttest shows standard deviations (the variance is just the
square of the standard deviation).

Note that this statistic is given at the very end of ranksum2 for a nonparametric comparison (via the ranksum test).

Remarks

In addition to its use in helping to interpret statistical results, this statistic can also be used, with caution, to “adjust”
the results from studies that are of lower quality than desired. For example, Colditz et al. (1989) suggest that studies that use
sequential assignment, rather than random assignment, should have their Mann–Whitney statistics reduced by 0.15 and that
non-double-blind randomized studies should be decreased by 0.11. Another example (Colditz et al. 1988a) is that when there is
a standard therapy but the control group is a placebo group, the Mann–Whitney statistic should be decreased by 0.10!

In other words, studies using sequential assignment have been shown to be biased (as compared with randomized studies)
and the amount of bias is about 15%; that is, non-randomized studies tend to overestimate the proportion of pairs in which one
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group does better by about 15%, compared with randomized studies. Similarly, use of a placebo arm in a study, when there is a
standard therapy, tends to result in a bias of about 10%. Note that these percentages are based on an examination of a number
of studies in certain medical areas from the 1980s; the results might differ in other areas (e.g., schizophrenia) or at other times.

The formulas used are from Colditz et al. (1988b); in that article they also present a formula for obtaining a combined
score across several measures, weighting each by the inverse of their standard deviations. This requires the sample size for each
group.

Examples of the use of the Mann–Whitney test statistic

The first example is from the Stata Manual (and is the same as the second example used for BESD, below). The only
difference between the first two examples is the sign of the statistic, with the results summing to 1.0.

. mwstati -1.75 0.7797, m

Mann-Whitney statistic for this situation is: 0.0124

We would interpret this to mean that in only 1% of the with-and-without treatment pairs would the without treatment car have
greater mileage. Since there are only two groups, this implies that in about 99% of the pairs, the car with treatment would have
greater mileage; we can check on this by entering the same information as above, except that the negative sign on the t statistic
is left off:

. mwstati 1.75 0.7797, m

Mann-Whitney statistic for this situation is: 0.9876

The next example is also from the Stata Manual.

. mwstati 1.75 .6209 .8798, i

Mann-Whitney statistic for this situation is: 0.9234

This final example shows the same information, but now using the separate variances. The Mann–Whitney score goes down
from about 99% to about 92% showing some effect of our assumption of equal variances.

Binomial effect-size display

besd test value
�

#n #df
� �

, chi t f

�

If there is no option then the first argument should be the correlation and nothing else is needed.

Many people use statistics that appear to have obvious meanings, such as the correlation coefficient, or an effect size (e.g.,
the difference in means divided by the common standard deviation). However, it is not always obvious how “important” the
value of these is in the real world.

“The BESD displays the change in success rate (e.g., survival rate, improvement rate, etc.) attributable to a new treatment
procedure. For example, an r of .32 ... is said to account for “only 10% of the variance”; however, the BESD shows that this
proportion of variance accounted for is equivalent to increasing the success rate from 34% to 66%, which would mean, for
example, reducing an illness rate or a death rate from 66% to 34%.” (Rosenthal and Rubin 1982, 166).

Examples of the use of the BESD

The first example is from Rosenthal and Rubin (1982, 167):

. besd .32

Difference in 'success' rates = 0.320

'Experimental success' rate = 0.660 & 'control success' rate = 0.340

Thus, a correlation of 0.32 is equivalent to increasing the success rate from 34% to 66%, certainly an important accomplishment.

The next example is from the Stata Manual’s entry on [R] ttest.

. besd 2.244 11, t

Difference in 'success' rates = 0.560

'Experimental success' rate = 0.780 & 'control success' rate = 0.220
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In this example, we see that a relatively small t statistic implies a large real-world difference in success rates, one that would
make most of us ecstatic.
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STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt datasets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology ssa survival analysis
sed exploratory data analysis ssi simulation & random numbers
sg general statistics sss social science & psychometrics
smv multivariate analysis sts time-series, econometrics
snp nonparametric methods svy survey sampling
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified
srd robust methods & statistical diagnostics

In addition, we have granted one other prefix, stata, to the manufacturers of Stata for their exclusive use.
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Sweden N�13–9� Dto. Quinta Grande

Phone: +46-708-163128 2720 Alfragide Portugal
Fax: +46-8-6122383 Phone: +351 (01) 4719337

Email: hedstrom@metrika.se Telemóvel: 0931 62 7255
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