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an1.1 STB categories and insert codes

Inserts in the STB are presently categorized as follows:

General Categories:
an announcements ip instruction on programming
cc communications & letters os operating system, hardware, &
dm data management interprogram communication
dt data sets qs questions and suggestions
gr graphics tt teaching
in instruction zz not elsewhere classified

Statistical Categories:
sbe biostatistics & epidemiology srd robust methods & statistical diagnostics
sed exploratory data analysis ssa survival analysis
sg general statistics ssi simulation & random numbers
smv multivariate analysis sss social science & psychometrics
snp nonparametric methods sts time-series, econometrics
sqc quality control sxd experimental design
sqv analysis of qualitative variables szz not elsewhere classified

In addition, we have granted one other prefix, crc, to the manufacturers of Stata for their exclusive use.

an38 Stata distributor in France

Stata Corporation announces Ritme Informatique as its new distributor in France.

Ritme has specialized in distributing multi-platform scientific software in France for more than four years in the fields of
mathematics, statistics, systems control and simulation, and data analysis and visualization. Ritme is also the official distributor
of Mathematica, Spyglass, Scientific Word, and VisSim. In addition, Ritme provides a broad range of services to its customers,
from technical support to specific developments and training. Ritme also publishes its own line of scientific software and books.

Please contact Ritme if you have any questions about Stata, or if you would like to be added to their mailing list and
receive, on a regular basis, their scientific software catalog and Ritme Informatique newsletter (with product announcements,
information on new releases, training sessions, etc.)

Please contact:

RITME INFORMATIQUE

34, Boulevard Haussmann
75009 PARIS

(33-1) 42.46.00.42 (voice)
(33-1) 42.46.00.33 (FAX)

an39 NSF funds workshops on exploratory data analysis for social scientists

Two one-week workshops on exploratory data analysis will be held this summer at San Francisco State University. These
workshops are funded by the National Science Foundation’s Faculty Enhancement Program and are designed to introduce social
sciences faculty to exploratory data analysis on microcomputers. The workshops are intended for faculty who are familiar with
statistical methods through multiple regression, who teach undergraduate statistics and data analysis courses, and who are familiar
with the use of either DOS or Macintosh computers.

The workshops will use Stata to cover the major techniques of exploratory and robust data analysis. A partial list of topics
includes: data smoothing, median polishing, rescaling and transforming data using the ladder of powers, five-number summaries,
box-and-whisker plots, stem-and-leaf plots, robust statistics, analytical graphics, and regression diagnostics including graphical
methods of regression diagnosis. The workshops will be taught by Professors J. Theodore Anagnoson of the Department of
Political Science, California State University, Los Angeles; Richard E. DeLeon of the Department of Political Science at San
Francisco State University; and Richard Serpe of California State University, San Marcos.
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Each workshop participant will receive:

� hotel accommodations at the San Francisco State University Guest Center.

� all meals during the workshops.

� a copy of Stata, with manual.

� a copy of Student Stata and StataQuest, both developed for teaching students about statistics.

� copies of Lawrence Hamilton’s books Statistics With Stata and Modern Data Analysis and Anagnoson and DeLeon’s Using
StataQuest.

� numerous data sets that the instructors have produced for use in instruction exercises and student research.

� numerous handouts and exercises.

� a bound copy of relevant readings.

Workshop participants are responsible for travel costs to and from the workshop.

The first workshop covers beginning and intermediate topics and will be held from July 6–13. The second workshop covers
intermediate and advanced topics and will be held from August 3–8. Each workshop is limited to twenty participants. The
deadline for applications is April 1, 1994. For more information and for applications, please contact:

Professor J. Theodore Anagnoson
Department of Political Science
California State University
Los Angeles, CA 90032-8226
(213) 343-2230 (voice)
(213) 343-6452 (FAX)
tanagno@atss.calstatela.edu (Internet)

an40 Italian translation of Principles of Biostatistics

An Italian translation of Marcello Pagano and Kimberlee Gauvreau’s Principles of Biostatistics will be published next month.
Principles of Biostatistics is written for students of the health sciences and serves as an introduction to the study of biostatistics.
Pagano and Gauvreau, both of the Harvard School of Public Health, use data from published studies to illustrate biostatistical
concepts, and they supply these data—both in raw form and as Stata .dta files—with the book. Volume 1 of the Stata 3.1
Reference Manual contains a detailed description of the contents of Principles of Biostatistics along with ordering information
(see [0] biostat).

The Italian translation is titled Fondamenti di Biostatistica and is published by Liviana Medicina-Gruppo Idelson. The
translation is edited by Italo Angelillo, D.D.S., M.P.H., associate professor of hygiene; Maria Pavia, M.D., M.P.H., assistant
professor of hygiene; and Paolo Villari, M.D., M.P.H., assistant professor of hygiene. Angelillo and Pavia are with the Medical
School of the University of Reggio Calabria. Villari is with the Medical School of the University “G. D’Annunzio” of Chieti.

For information on ordering Fondamenti di Biostatistica, contact:

Liviana Medicina-Gruppo Idelson
Via A. De Gasperi, 55—Napoli
(011) 39-81-552-4733 (voice)
(011) 39-81-552-8295 (FAX)

cc2 Running the Stata tutorials on a network

In a recent communication, Allan Reese of Hull University writes

I just solved a long-standing mystery. We have always had to tell students to switch to the network disk as their default
to run the tutorials. Just having the tutorial files in the default path or even appending didn’t help. Poking around
the directory now, I found setpath.tut and a simple edit makes the tutorials fully visible. I obviously have never
noticed that in the documentation, and I can’t find a mention now in the installation notes.
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Explanation

This communication highlights a gap in the Stata documentation. We thank Allan Reese for raising this issue and giving
us the opportunity to fill this gap.

The Stata tutorials provide an efficient way to introduce new users to Stata. The tutorials are particularly helpful for those
who do not have extensive experience with computers. This aspect makes the tutorials popular with instructors who wish to
include a computer-based component in their courses. Instructors frequently send their students to a computer lab or college
network to complete their course assignments. This can raise problems for students attempting to run the Stata tutorials, since
each computer lab or network may install Stata differently.

The Stata tutorials are do-files, albeit with an extension of .tut rather than the traditional .do. Stata do-files are ordinary
files containing one or more Stata commands. A do-file is similar to a DOS .BAT or a Unix shell script in that it can reduce
a long and possibly tedious sequence of commands to a single, easily remembered command. To execute a Stata do-file, you
type ‘do name-of-do-file’ or ‘run name-of-do-file’. A related construct is the Stata program or ado-file—the mainstay of this
bulletin. ado-files are invoked simply by typing the name of the ado-file.

Stata searches for ado-files in the path specified by the global macro S ADO. In contrast, Stata looks only in the current
directory for do-files. There is no path for do-files. If the desired file is in another directory, the full name of the file, including
the path, must by typed—for example, ‘do c:\myfile\thistut.tut’.

This feature of do-files complicates the use of the Stata tutorials. The tutorials are interconnected. User-level tutorials call
lower-level do-files to perform some tasks, and the user-level tutorials need some way to find the lower-level files. The do-file
setpath.tut is designed to solve this problem.

Suppose a user starts Stata from his or her personal directory and enters the tutorial system by typing

. do c:\stata\intro.tut

The do-file intro.tut is designed to execute other tutorial files. intro.tut runs setpath.tut which “looks” for these
tutorials in several likely locations. If it finds them, it tells intro.tut the path to use to locate the tutorials. Otherwise, it exits
with an error message.

The listing below displays the contents of setpath.tut.

version 2.1

mac def path

capture run ./nullfile.tut

if _rc == 0 exit

mac def path "c:\stata\"

capture run if _rc == 0 exit

mac def path "\stata\"

capture run if _rc == 0 exit

mac def path "/usr/local/stata/"

capture run if _rc == 0 exit

#delimit ;

di in red

"I cannot find the other tutorial files. I have looked in the current" _n

"directory, in \stata (DOS) and in /usr/local/stata (Unix)."

_n "Is Stata installed correctly?" _n(2)

"In any case, I cannot run the tutorial." ;

#delimit cr

exit 601

setpath.tut tries to execute nullfile.tut in a variety of locations. nullfile.tut is stored with the rest of the
tutorial files. nullfile.tut doesn’t do anything; its only command is exit. If nullfile.tut executes without an error,
setpath.tut knows it has found the location of the tutorial files. If nullfile.tut doesn’t execute, setpath.tut keeps

looking. If setpath.tut never finds nullfile.tut, it displays an error message.

It is straightforward to customize setpath.tut for your network. Simply add the directory where you have stored the
tutorial files to the list of locations searched by setpath.tut.
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crc34 Programming command: marking observations for inclusion

The syntaxes of mark and markout are

mark newmarkvar
�
weight

� �
if exp

� �
in range

�
markout markvar

�
varlist

�
aweights, fweights, pweights, and iweights are allowed.

Description

mark and markout are for use in Stata programs.

mark creates newmarkvar containing 0’s and 1’s. Observations meeting the if, in, and having nonzero weight will have
newmarkvar set to 1; the remaining observations will be set to 0. Weights, if specified, are checked for sensibleness (not negative
if not iweights, integers if fweights) and the appropriate error message issued if not.

markout resets 1’s in a marking variable created by mark to contain 0 wherever any of the variables in varlist contain
missing values. String variables are treated as if they contain missing values.

Remarks

mark and markout are fast commands for managing sample selection in Stata programs. Consider a Stata program that
begins

program define myprog

version 3.1

local varlist "required existing"

local if "optional"

local in "optional"

parse "`*'"

(program continues)

Pretend this Stata program continues to make a statistical calculation based on the observations specified in the varlist that do
not contain missing values (such as a linear regression). The program must identify the observations that it is to use. Moreover,
since the user can specify if or in, these restrictions, too, must be taken into account. mark and markout make this easy:

(myprog, continued from above)
tempvar touse

mark `touse' `if' `in'

markout `touse' `varlist'

(program continues)

The mark command creates a (temporary) variable `touse' (temporary because of the preceding tempvar; see [6a] macro)
based on the if and in. If there is no if or in, `touse' will contain 1 for every observation in the data. If ‘if wgt>1000’
was specified by the user, only observations for which wgt is greater than 1,000 have touse set to 1; the remaining have touse

set to zero.

The markout command updates the `touse' marker created by mark. For observations for which touse is 1—observations
that might be potentially used—the variables in the user-specified varlist are checked for missing values. If such an observation
has any of the variables in the varlist equal to missing, its touse value is reset to 0.

Thus, the observations to be used by this command all have `touse' set to 1; including “if `touse'” at the end of
statistical or data-management commands will restrict the command to operate on the appropriate sample.

Comments

1. mark and markout are internal commands of Stata 3.1; they were added at the last minute and so were not documented.
Because they are internal, they are very fast.

2. By far the most common programming error—made by us and others—is to use different samples at different parts of the
program. We strongly recommend that programmers identify the sample at the outset of the program. mark and markout

make this easy and fast.
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Examples

1. Write a program to do the same thing as summarize, except that it is to engage in casewise deletion—if an observation
has a missing value in any of the variables, it is to be excluded from all the calculations.

program define cwsumm

version 3.1

local varlist "optional"

local if "optional"

local in "optional"

local weight "aweight fweight"

local options "Detail noFormat"

parse "`*'"

tempvar touse

mark `touse' `if' `in' [`weight'`exp']

markout `touse' `varlist'

summarize `varlist' [`weight'`exp'] if `touse', `detail' `format'

end

2. Write fsumm for use after fit that reports the means of all the variables used in the estimation.

Solution: [5s] fit (page 357, volume 2) reports that fit saves the original varlist (dependent and independent variables) in
$S E vl, saves the original if and in (if any) in $S E if and $S E in, and the weight type and expression for the weight
(if any) in $S E wgt and $S E exp. Finally, fit saves its own name in $S E cmd. Thus:

program define fsumm

version 3.1

if "$S_E_cmd"~="fit" { error 301 }

if "`*'"~="" { error 198 }

tempvar touse

mark `touse' $S_E_if $S_E_in [$S_E_wgt $S_E_exp]

markout `touse' $S_E_vl

summarize $S_E_vl [$S_E_wgt $S_E_exp] if `touse'

end

As an alternative, if we did write cwsumm, we could write

program define fsumm

version 3.1

if "$S_E_cmd"~="fit" { error 301 }

if "`*'"~="" { error 198 }

cwsumm $S_E_vl [$S_E_wgt $S_E_exp] $S_E_if $S_E_in

end

crc35 Warning about parity checking on DOS computers

A few unethical, no-name computer manufacturers have sold fast 486 computers with the memory parity checking turned
off. They do this so they can use substandard, and cheaper, memory chips. When parity is turned on—as it should be—and the
memory makes a “mistake,” the computer is stopped and the words “parity error” are displayed. When parity is turned off,
mistakes are not detected and the computer keeps right on running. If this should happen while you are running Stata, results
of calculations can be incorrect and your data can even be permanently corrupted. Some 486s are designed so that parity can
be turned off for testing purposes. The computer will still run, and special software can be executed that will determine the bad
memory chip. Except for such diagnostic purposes, the parity should never be turned off.

If you have a computer of uncertain manufacture, you can verify that parity is turned on by entering the ROM setup when
you power-up your computer. This is often done by holding down a certain key or keys during the boot process—typically the
Del key. The startup screen usually says what the keys are. On other computers, there is a separate setup diskette you boot from.
The parity setting is typically buried deep in the advanced setup menus. Make sure it is on or enabled. If not, enable it and exit
the setup menus saving the changes. Now, if your computer has a hardware difficulty, it will stop before any damage is done.
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dm16 Compact listing of a single variable

Patrick Royston, Royal Postgraduate Medical School, London, FAX (011)-44-81-740 3119
Peter Sasieni, Imperial Cancer Research Fund, London, FAX (011)-44-71-269 3429

The syntax of lw is

lw varname
�
if exp

� �
in range

� �
, cols(#) [obsno j rownum j n�

linenum dense format(%fmt) width(#) nohead
�

lw is a variation on list—it can list only one variable but, rather than listing the data verbosely down the page, it lists it more
compactly across the page.

lw can be helpful (especially with the obsno option) when searching for data errors since you can scan more data at once.

Options

cols(#) sets the total number of items to be displayed on a line. An item is a data value or an (optional) observation number.
The default is to display as many columns as will fit (see width() below). The number of columns actually used is saved
in $S 1.

obsno (synonyms rownum and n) displays the observation numbers as well as the data; the default is to display solely the data. If
obsno is specified, the observation number followed by a fullstop (period) is listed in front of each data value. A variation
especially useful for persons with monochrome monitors is available (see Technical note below). Note that the observation
numbers count as items in cols(). If obsno is specified, half the items on each row will be observation numbers with the
remaining half the corresponding data values. If # is odd and greater than 1, only # � 1 items will be displayed per line.

linenum is a variation on obsno; it displays the observation number only once per line, listing the number at the start of the
line. The number of data values per line will be one fewer than the number of items as specified by cols().

dense lists the data more densely than otherwise by placing the columns closer together.

format(%fmt) specifies the display format for displaying the data values. Its use is not encouraged because lw engages in
sophisticated logic to determine the format on its own (see Methods and Formulas below).

width(#) specifies the maximum number of characters per line; the default is 79. # must lie between 10 and 32000 inclusive.

nohead suppresses the header at the top identifying the variable and the number of observations listed.

Technical note

On color-text monitors, the optionally presented observation numbers are shown in green and the data in yellow. On
monochrome-text monitors, the observation numbers are not so clearly distinguished. To remedy this, lw offers the alternative
of surrounding the observation numbers with [] square brackets. Define the global macro S LW by typing

. global S_LW anything except period or blank

This need be done only once per session. (You might wish to include this in a do-file as part of your start-up procedure; see
[1] start/stop.)

The default display mode can be reestablished by typing

. global S_LW

Example

. use \stata\auto, clear

(1978 Automobile Data)

. * Keeping the first 40 observations will suit our purpose and save paper:

. keep in 1/40

(34 observations deleted)
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. lw mpg

mpg (listing 40 observations):

22 17 22 20 15 18 26 20 16 19 14 14 21 29 16 22 22 24 19

30 18 16 17 28 21 12 12 14 22 14 15 18 14 20 21 19 19 18

19 24

. lw gratio

gratio (listing 40 observations):

3.58 2.53 3.08 2.93 2.41 2.73 2.87 2.93 2.93 3.08 2.28 2.19 2.24

2.93 2.56 2.73 2.73 2.73 2.56 3.54 2.47 2.47 2.94 3.15 3.08 2.47

2.47 2.47 2.73 2.75 2.26 2.43 2.75 3.08 2.41 2.93 2.93 2.73 3.08

2.73

. lw gratio, dense

gratio (listing 40 observations):

3.58 2.53 3.08 2.93 2.41 2.73 2.87 2.93 2.93 3.08 2.28 2.19 2.24 2.93 2.56

2.73 2.73 2.73 2.56 3.54 2.47 2.47 2.94 3.15 3.08 2.47 2.47 2.47 2.73 2.75

2.26 2.43 2.75 3.08 2.41 2.93 2.93 2.73 3.08 2.73

. lw mpg, obsno

mpg (listing 40 observations):

1. 22 2. 17 3. 22 4. 20 5. 15 6. 18 7. 26

8. 20 9. 16 10. 19 11. 14 12. 14 13. 21 14. 29

15. 16 16. 22 17. 22 18. 24 19. 19 20. 30 21. 18

22. 16 23. 17 24. 28 25. 21 26. 12 27. 12 28. 14

29. 22 30. 14 31. 15 32. 18 33. 14 34. 20 35. 21

36. 19 37. 19 38. 18 39. 19 40. 24

. lw mpg, linenum

mpg (listing 40 observations):

1. 22 17 22 20 15 18 26 20 16 19 14 14 21 29 16 22 22

18. 24 19 30 18 16 17 28 21 12 12 14 22 14 15 18 14 20

35. 21 19 19 18 19 24

For users of monochrome monitors:

. global S_LW "mono"

. lw mpg, obsno

mpg (listing 40 observations):

[ 1] 22 [ 2] 17 [ 3] 22 [ 4] 20 [ 5] 15 [ 6] 18 [ 7] 26

[ 8] 20 [ 9] 16 [10] 19 [11] 14 [12] 14 [13] 21 [14] 29

[15] 16 [16] 22 [17] 22 [18] 24 [19] 19 [20] 30 [21] 18

[22] 16 [23] 17 [24] 28 [25] 21 [26] 12 [27] 12 [28] 14

[29] 22 [30] 14 [31] 15 [32] 18 [33] 14 [34] 20 [35] 21

[36] 19 [37] 19 [38] 18 [39] 19 [40] 24

. lw mpg, linenum

mpg (listing 40 observations):

[ 1] 22 17 22 20 15 18 26 20 16 19 14 14 21 29 16 22 22

[18] 24 19 30 18 16 17 28 21 12 12 14 22 14 15 18 14 20

[35] 21 19 19 18 19 24

Methods and Formulas

The only trick to lw has to do with determining the default display format. lw scans the data to be printed and determines
the units of the variable. The units u are defined as the largest u such that every data value xj can be expressed as kj � 10u for
kj an integer. If u � 0, then no decimal places are required; otherwise, �u decimal places are required to accurately portray
the data.

ip5 A temporary solution to a problem with temporary variable names

Craig S. Hakkio, Federal Reserve Bank of Kansas City, FAX 816-881-2199

Stata’s tempvar command generates names that can be used for temporary variables used in ado-files. These names are
guaranteed to be unique, and Stata automatically drops variables named by tempvar at the end of the program in which the
name is created. tempvar, along with tempname and tempfile, make it easy to design elaborate, interconnected ado files
without inadvertently reusing temporary names for variables, scalars, matrices, or files ([6a] macro).
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The problem

I recently discovered a problem in combining operators with the temporary variable names generated by tempvar. This
problem occurs frequently in time series applications.

The STB has featured a number of useful time series programs. Among these are utility programs for generating lags, leads,
differences, and growth rates of existing variables (Becketti 1992, 1993). These commands employ an operator notation that is
well-suited to naming variables that are produced by applying an operator to an existing variable. For example, the command

. lag 4 gnp

creates the four variables L.gnp, L2.gnp, L3.gnp, and L4.gnp which contain the first through fourth lags of the variable gnp.

The problem arises when lag or one of the other operator commands is used to create temporary variables. The problem is
simplest to understand when one of these commands is applied to a temporary variable, but the problem arises in other situations
as well. Consider the following sequence of commands:

. tempvar gnp

. generate `gnp' = consume + invest + govt + exports - imports

. lag 4 `gnp'

The intent of these commands is, as before, to create four lagged variables, L.`gnp'-L4.`gnp'. In this case, though, there is
no guarantee that this code will produce unique variable names for the lagged variables.

The problem lies in the technique used by tempvar to create temporary variable names. tempvar generates eight-character
names of the form ######, that is, two underscores followed by six digits. The first time in a session that tempvar is called,
it generates the name 000000. The second time it is called, it generates the name 000001, and so on. On the millionth call
to tempvar in a single Stata session, tempvar generates the name 000000 and begins the cycle again. (In a Monte Carlo
study, I actually hit this limit once with disastrous results.)

Returning to the example above, imagine that the call to tempvar assigns the string 000003 to the local macro gnp. Then
the command lag 4 `gnp' will create the four variables L. 0000, L2. 000, L3. 000, and L4. 000. The crucial identifying
character in the temporary name for gnp is the rightmost digit. However the two rightmost digits are “pushed” off the end of
the variable name to make room for the L. prefix. Thus L. 0000 could be the lag of any of the 100 temporary variables from
000000 through L. 0099. Since temporary variables are created within programs, this type of name collision is highly likely

to occur.

A temporary solution

There is no simple or obvious solution to this problem. The ideal solution would be for Stata to incorporate the operator
notation in its variable name syntax. Thus if X. is a legal Stata operator and x is an existing variable, then Stata would treat the
construction X.x as an existing variable without actually creating a separate variable to contain the values of X.x. Alternatively,
Stata could allocate separate space in variable names to contain the operators. Then operators would not eliminate characters in
the base name.

Both of these solutions involve drastic changes in Stata itself. These changes may never occur, and I need a workaround
solution in the meantime. One unattractive solution is to return to the technique used to name temporary variables prior to
the introduction of the tempvar command, that is, to choose unlikely names for temporary variables and hope that no name
collisions occur. This technique is virtually guaranteed to fail.

I have devised an alternative solution to the problem with temporary variables. It is not as elegant and easy-to-use as Stata’s
tempvar command, and I regard it as a stopgap until Stata provides a permanent solution to the problem of combining operators
with temporary variable names. However, this temporary solution works.

The faketemp command creates temporary variable names that can safely be combined with operators. The syntax is

faketemp
�
#
�

The optional number following the command name specifies the number of temporary names to generate. The temporary
names are stored in the global macros S 1, S 2, : : :.

faketemp creates legal, four-character variable names that do not exist in the current data set. It forms these names from
upper and lower case letters chosen at random. For example,
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. faketemp

. display "$S 1"

WpxI

Because the names generated by faketemp are only four characters long, up to four operator characters can be prefixed without
losing any identifying information. Because the names generated by faketemp are completely random—in contrast to the
sequential names generated by tempvar—a name collision is unlikely even when five or six operator characters are prefixed to
a name.

One problem remains. tempvar automatically drops temporary variables at the end of the program that created them. You
can approximate this feature by keeping a list of temporary variables created by your programs and explicitly dropping them at
the end of the program. The following artificial example illustrates this approach.

. use example, clear

(National income accounts)

. faketemp

. display "$S 1"

WpxI

. local gnp "$S 1"

. local fake "`gnp'"

. generate `gnp' = consume + invest + govt + netex

. label variable `gnp' "Gross national product"

. lag 4 `gnp'

. local fake "`fake' L.`gnp'-L4.`gnp'"

. describe

Contains data from example.dta

Obs: 133 (max= 32766) National income accounts

Vars: 12 (max= 99)

Width: 44 (max= 200)

1. year int %8.0g Year

2. quarter int %8.0g quarter Quarter

3. date float %9.0g Date

4. consume float %9.0g Consumption

5. invest float %9.0g Investment

6. govt float %9.0g Government spending

7. netex float %9.0g Exports - imports

8. WpxI float %9.0g Gross national product

9. L.WpxI float %9.0g L.WpxI

10. L2.WpxI float %9.0g L2.WpxI

11. L3.WpxI float %9.0g L3.WpxI

12. L4.WpxI float %9.0g L4.WpxI

Sorted by: year quarter

Note: Data has changed since last save

. drop `fake'

This approach will fail if the program is interrupted before the drop command is reached. Alternatively, you can use the
preserve command before creating any temporary variables. This command takes a “snapshot” of the current data set and
restores it at the end of a program’s execution regardless of how the program is terminated. The preserve command saves the
current data set in a temporary file, then uses the temporary data set at the end of the program. This approach can be very
time-consuming in a program that is used frequently or in a repetitive program such as a Monte Carlo study.

While faketemp has limitations, it does solve the immediate problem of combining operators with temporary variable
names. I hope that the next version of Stata improves the treatment of operators so that faketemp becomes obsolete.

References
Becketti, S. 1992. sts2: Using Stata for time series analysis. Stata Technical Bulletin 7: 18–26.

——. 1993. sts4: A suite of programs for time series regression. Stata Technical Bulletin 15: 20–28.
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os5.1 Running Intercooled Stata under OS/2 2.1

William Gould, Stata Corporation, FAX 409-696-4601

Installing Intercooled Stata 3.0 or 3.1 under OS/2 2.1 is no different than under OS/2 2.0. You execute Stata under one of
the IBM-supplied DOS windows, which may be full screen or not. The only problem is that Stata cannot determine how much
memory to allocate to itself, so you must specify the /k startup option (see [5u] stata).

Invoke a DOS window. At some point, you should modify your autoexec.bat file and set the PATH to include the Stata
directory just as you would were you running a real DOS computer; this way, Stata can be invoked from any directory. Right
now, change to the directory in which Stata is installed. Type ‘istata’. Stata will respond with an allocation-failure message;
this is the problem: Stata’s automatic memory-allocation routines try to allocate too much memory and fail.

If you type ‘istata /k1000’, however, Stata will come up. The /k1000 overrides Stata’s automatic determination and
tells Stata to allocate 1 megabyte of memory.

/k1000 works because IBM set the amount of DPMI memory to 2 megabytes. Stata uses this memory both for its code and
data. Stata’s code takes about 800K, so /k1000 will work and, in fact, leave some memory free. (You can experiment to see
how large you can make the data area: try /k1100, exit Stata if it works, and then keep trying larger numbers until you get the
message “allocation failure.” Use the largest number that worked. In practice, this does not make much difference.)

You will probably want more than 1 megabyte of memory for your data. To do this, you must increase the amount of
DPMI memory allocated to the DOS window. This setting is found in the DOS settings menu under the window’s configuration
parameters. There are lots of settings here, but only the DPMI MEMORY LIMIT matters. As shipped by IBM, the limit is set to 2,
meaning 2 megabytes. If you change the limit to 4, then 4 megabytes of DPMI memory will be allocated. Correspondingly, when
you invoke Stata, you will have to specify the /k3000 option, meaning 3 megabytes to Stata’s data area (with the remaining
used by Stata for its code).

You may make the DPMI MEMORY LIMIT as large as you want: 12 means 12 megabytes; 16, 16 megabytes; and so on. OS/2
provides virtual memory, so you can even push this limit beyond the physical amount of memory on your computer. If you do
that, however, Stata will execute quite slowly. For performance reasons, we recommend setting the limit to 3 or 4 megabytes
below the physical amount of memory on your computer. Just remember, whatever you change the limit to, you must give the
corresponding /k option to Stata when you invoke it. If you change DPMI MEMORY LIMIT to 12, you invoke Stata by typing
‘istata /k11000’.

Performance under OS/2

OS/2 is an excellent performer. In our timings, Stata runs between 0.5 and 5 percent slower than it runs directly under DOS.
In return for the slight speed degradation, OS/2 provides multitasking. Nevertheless, many users will think Stata under OS/2 is
running slower than it really is. This is a perception issue.

OS/2 slows down the rate at which Stata can display characters on the screen considerably—approximately 15 percent. The
more slowly appearing output fools most users into thinking everything is that much slower. That is not true. There is virtually
no difference in the time it takes Stata to make statistical calculations and, in fact, that is where most cpu time is spent. (We
also use Unix workstations with slow output times to the screen even when compared to OS/2 and yet, in fact, these computers
are much faster than the computers on which we run DOS and OS/2.)

One occasion where OS/2 is slow is drawing Stata graphs in a DOS window. This is because OS/2 must monitor the
graph, pixel by pixel, and clip it at the borders of the window. Performance is still not bad, but if this bothers you, use the
fullscreen version of DOS, not the DOS window. This is why IBM supplied two window types for DOS: the fullscreen version
does not require OS/2 monitor output for the borders around the window and so runs faster. Again we emphasize, this is only an
output-to-the-screen issue: the time to perform statistical calculations is the same no matter which type of DOS window you use.
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sg20 Point biserial correlation

John A. Anderson, Pennsylvania Transportation Institute, The Pennsylvania State University
FAX 717-948-6031, EMAIL jaa5@psuvm.psu.edu

pbis calculates a point biserial correlation coefficient and tests if the coefficient is significant from zero. The syntax of
pbis is

pbis bvar cvar
�
if exp

� �
in range

�
where bvar is a binary variable and cvar is a continuous variable.

Point biserial correlation is the preferred statistical procedure for calculating a simple correlation coefficient between a
continuous variable and a dichotomous variable. Point biserial correlations are commonly used for comparing a “pass/fail” type
variable with test scores. It is also appropriate to use point biserial correlations in other situations. A sociologist or economist,
for example, may wish to calculate simple correlations using individuals from two different geographical regions and compare
them on some continuous measure of socioeconomic status or attitude.

Point biserial correlation is a true Pearson product-moment correlation and therefore when using pbis the assumptions
underlying Pearson’s r apply. Similarly, a point biserial correlation coefficient (rpbi) is interpreted identically to Pearson’s r.
However, rpbi is more appropriate when one of the variables is dichotomous.

When using pbis, bvar must be in the form of a zero/one dummy variable. The equation pbis uses for calculating a point
biserial correlation coefficient is

rpbi =
Xp �X

SX

r
p

q

In this formula SX=the standard deviation of cvar (the continuous variable); Xp=a value of cvar when bvar=1; X=any value
of cvar; p=the proportion of bvar equal to one; and q=the proportion of bvar equal to zero.

pbis tests the rpbi for significance from zero by calculating a t-ratio using the following formula:

t = rpbi

s
N � 2

1� r
2

pbi

In this formula N=the total number of observations. The degrees of freedom (df) used for a two-tailed test are df = N � 2.

When pbis is the more appropriate choice, substituting correlation as an alternative may lead to false conclusions. The
following is an example demonstrating a situation when Pearson’s r results in an inflated coefficient and leads the researcher to
a false conclusion.

Example

In this example I look at the correlation between two geographical locations regarding some measure of individuals’ attitudes.
The first variable, location, was coded such that zero represents location A and one represents location B. The second variable,
scale, consists of measures of individuals’ attitudes

. use pbisdemo, clear

. describe

Contains data from pbisdemo.dta

Obs: 11 (max= 32766)

Vars: 2 (max= 99)

Width: 3 (max= 200)

1. location byte %8.0g Geographical location

2. scale int %8.0g Attitudinal scale

Sorted by: scale

. list

location scale

1. 0 8

2. 0 11

3. 0 20

4. 1 29

5. 0 30
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6. 0 33

7. 1 35

8. 1 39

9. 0 42

10. 1 44

11. 1 54

. pbis location scale

(obs= 11)

Np= 5 p= 0.45

Nq= 6 q= 0.55

------------------+------------------+------------------+------------------+

Coef.= 0.5767 t= 2.1177 P>|t| = 0.0633 df= 9

The results displayed after employing pbis include Np, Nq, p, and q (the number of observations and respective ratios
determined by the dichotomous variable). With df=9 the critical value of t for a two-tailed test at � = .05 is 2.262. The t

produced by pbis is not large enough to reject the null hypothesis that � = 0. Had we used the correlate command to
calculate a Pearson’s r, however, we might have falsely rejected the null hypothesis. As shown below r is inflated compared to
rpbi.

. correlate location scale

(obs=11)

| location scale

--------+------------------

location| 1.0000

scale| 0.6048 1.0000

Using r = 0.6048 reveals an inflated t-ratio where t is defined by the equation:

t = r

r
N � 2

1� r2

The result, t = 2.278, is just large enough to reject the null hypothesis. However, in this case the researcher will have committed
a Type-I error.

Saved Results

pbis produces the following system macros:

S 1 rpbs

S 2 t-ratio
S 3 total number of observations
S 4 Np or number of observations for bvar==1
S 5 Nq or number of observations for bvar==0
S 6 mean of cvar
S 7 variance of cvar

sg21 Equivalency testing

Richard Goldstein, Qualitas Inc., Brighton MA, EMAIL goldst@harvarda.bitnet

When one fails to reject a null hypothesis that two means (or proportions) are equal, what is one’s substantive conclusion?
Technically, one cannot conclude that the means are equal, only that one cannot reject the hypothesis that they are equal.
Traditionally, one would examine the power of the test and if it was relatively high, one would act as though the means were
equal.

However, over the last twenty years or so, pushed by the Food and Drug Administration, a number of statisticians have
devised tests of equivalence which can be contrasted with the usual test of difference. Note that in the usual test, here called a
difference test, the null hypothesis is that there is no difference and the alternative hypothesis is that the means are different. In
an equivalence test, the null hypothesis is that the means are different by at least X (where X is chosen to be substantively, or
clinically, important), and the alternative hypothesis is that the means, if different, are different by less than X . Here, then, a
rejection of the null hypothesis means we can conclude that the means are equivalent (within whatever band of equivalence is
substantively important to us).
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The FDA, and much of the literature, discusses this test in the context of crossover trials rather than simple tests of means or
of proportions; however, the translation into t-test terms, for example, is relatively simple and much more useful to me. Thus, I
present only the test comparing means and the test comparing proportions; the crossover factor is not implemented, but certainly
one can obtain the same results using these ado-files.

Two types of equivalence tests are presented here, one for two means and one for two proportions. There are also immediate
versions of both tests. The Westlake (1976, 1981, 1988) versions of both tests are presented and the Hauck-Anderson (Anderson
and Hauck 1983, Hauck and Anderson 1984) version of the t-test is also presented. The H-A test is more powerful than the
Westlake procedure; however, this is at least in part due to the anti-conservatism of its p-values, while the Westlake version
p-values can be slightly conservative (Anderson and Hauck 1983, Frick 1987); further, the Westlake version also provides
confidence intervals that may be helpful.

The Westlake confidence intervals (CIs) can be used instead of the p-values: if the CI is entirely contained within the
equivalence interval (EI) (just a function of delta—see below), then one can reject the null hypothesis of difference of at least
size delta. Two different types of CIs and EI are shown: if one is comparing one value to a benchmark, the CI and EI are
intervals around the value being tested (the benchmark for the EI); if one is comparing two proportions or two means, then the CI

and EI are around the differences between the two values (see examples below). In all cases the standard difference test results,
and confidence intervals, are also presented.

Results were checked against those in Westlake’s articles, those in Hauck and Anderson, and those in Rogers, Howard and
Vesey (1993); all results matched.

Rogers, et al., argue that it can be informative to compare the results of the difference and equivalency tests. There are
four possible combinations and their interpretations are shown in the cells of the following table:

Equivalence test

Difference test reject null do not reject null

difference larger than
reject null standard null, but not different

as large as delta
(maybe too much power)

do not equivalent insufficient evidence
reject null (too little power)

At least as a first cut, I believe this makes sense. Note that to reject the null hypothesis for the Westlake version of the
equivalence test, one must reject the null for each of the two one-sided tests (or reject for the test with the larger p-value).

Equivalency testing for means

The equim command can be invoked in three different ways:

equim varname
�
= exp

� �
if exp

� �
in exp

� �
, delta(str) sdelta(str) random by(varname)

�
or

equimi n1 mean1 sd1 n2 mean2 sd2
�
, delta(str) sdelta(str) random

�
or

equimi n1 mean1 sd1 benchmean
�
, delta(str) sdelta(str)

�
The null hypothesis is that the means differ by at least delta (delta) or by delta in one direction and sdelta (sdelta)

in the other direction. For the third syntax, the null is that the mean differs from the benchmark mean by at least delta (or by
delta in one direction and sdelta in the other direction).

The first set of information entered (n1, mean1, and sd1) should be the values for the control, baseline, or reference group,
except in the third syntax where they are for the test group.

If delta is not entered, then a default of .2*mean1 (or .2*benchmean) is used as both delta and sdelta. Delta can be
entered either as a real number or as a percent; if you enter it as a percent, then you must include the percent symbol (%). Enter
the percent with no decimal place unless you want a fraction of a percent; that is, 10 percent is entered as “10%”, not as “.1%”.



Stata Technical Bulletin 15

If random is entered, then delta is treated as an estimated amount and the variance is increased (that is, the confidence
intervals are widened). If random is not entered—the default—then delta is treated as fixed and known. If delta is chosen
to be a percentage, you would normally not use this option.

Instead of entering a second variable name, you can enter “by(varname)” as with the ttest command (this option is of
course not available for the immediate version of the command). Do not enter both a second variable name and a “by()” or
you will return to the Stata prompt with an error message.

The relevant t-test and confidence intervals are also presented. Results are presented for both the normal distribution and the
t-distribution for the test of equivalence; the literature tends to use the normal distribution probability and confidence interval, but
I prefer the t. Here the confidence interval is for the difference in the means; if both ends of the CI are within the delta-sdelta
equivalence interval (range), then you conclude that the means are equivalent.

Finally, the p-value for the Hauck–Anderson test is also presented.

Example 1

The examples below follow the ttest examples on pages 230–231 of Volume 3 of the Version 3.1 Stata Reference Manual
and use the census.dta data file supplied by Stata on disk.

. use census

(1980 Census data by state)

. equim medage if region==1 | region==4, by(region)

Westlake version of test of Equivalence w/delta fixed and known:

test1: 13.953 normal p-value: 0.0000 t p-value: 0.0000

test2: -5.004 normal p-value: 0.0000 t p-value: 0.0001

Confidence Interval: Lower Limit 1.865 Upper Limit 4.033

t-Confidence Interval: Lower Limit 1.574 Upper Limit 4.323

Equivalence Interval (-/+ (s)delta) -6.247 6.247

t-test

Variable | Obs Mean Std. Dev.

---------+---------------------------------

x | 9 31.23333 1.023474

y | 13 28.28462 1.775221

---------+---------------------------------

combined | 22 29.49091 2.098051

Ho: mean(x) = mean(y) (assuming equal variances)

t = 4.47 with 20 d.f.

Pr > |t| = 0.0002

confidence interval: Lower Limit 2.991 Upper Limit 4.323

H-A p-value: 0.9993

. equimi 20 20 5 32 15 4

Westlake version of test of Equivalence w/delta fixed and known:

test1: 7.165 normal p-value: 0.0000 t p-value: 0.0000

test2: 0.796 normal p-value: 0.2130 t p-value: 0.4297

Confidence Interval: Lower Limit 2.934 Upper Limit 7.066

t-Confidence Interval: Lower Limit 2.477 Upper Limit 7.523

Equivalence Interval (-/+ (s)delta) -4.000 4.000

t-test

Variable | Obs Mean Std. Dev.

---------+---------------------------------

x | 20 20 5

y | 32 15 4

---------+---------------------------------

combined | 52 16.92308 5.007235

Ho: mean(x) = mean(y) (assuming equal variances)

t = 3.98 with 50 d.f.

Pr > |t| = 0.0002

confidence interval: Lower Limit 5.079 Upper Limit 7.523

H-A p-value: 0.5661



16 Stata Technical Bulletin STB-17

Equivalency testing for proportions

The three syntaxes for testing proportions are

equip varname
�
= exp

� �
if exp

� �
in exp

� �
, delta(str) sdelta(str) random by(varname)

�
or

equipi p1 n1 sd1 p2 n2 sd2
�
, delta(str) sdelta(str)

�
or

equipi p1 n1 pbase
�
, delta(str) sdelta(str)

�
The null hypothesis is that the proportions differ by at least delta (or by delta in the negative direction and sdelta in

the positive direction). That is, delta is used for p1�delta while sdelta is used for p1+sdelta.

If entering two variables, the first set of information entered (p1, n1, and sd1) should be the values for the control, baseline,
or reference group.

If delta is not entered, then a default of .2*p1 (or .2*pbase) is used as both delta and sdelta; if the expression in
= exp is a number, then the default delta is 20 percent of this number. Delta can be entered as either a real number or as a
percent; if you enter it as a percent, then you must include the percent symbol (%). Enter the percent with no decimal place
unless you want a fraction of a percent; that is, 10 percent is entered as “10%”, not as “.1%”.

Instead of entering a second variable name (on the right side of the equals sign in = exp), you can enter a number against
which the proportion of the first variable is to be tested, or you can enter “by(varname)” as with the ttest command (this
option is, of course, not available for the immediate version of the command). Do not enter both = exp and by() or you will
return to the Stata prompt with an error message. In this case, the p-values for the one-sided exact binomial tests are reported
as well as Westlake’s traditional tests.

The relevant binomial test and confidence interval are also presented. The confidence interval is for the difference in the
proportions if two variables or two full proportions (see above); if both ends of the CI are within the delta-sdelta equivalence
interval (range), then you conclude that the proportions are equivalent. Both exact and traditional CIs are presented for the case of
comparing a proportion to a base proportion; make sure you compare exact to exact or traditional to traditional; do not compare
exact to traditional.

Results were again checked against those in Rogers, et al. and all results matched for the equivalence tests.

Example 2

The following examples use auto.dta which is supplied on the Stata disk.

. use auto

(1978 Automobile Data)

. equip foreign=.3

Westlake version of test of Equivalence:

test1: 1.078 p-value: 0.1404

test2: -1.180 p-value: 0.1190

Confidence Interval: Lower Limit -0.09010 Upper Limit 0.08469

Exact Westlake CI: Lower Limit 0.21063 Upper Limit 0.39663

Equivalence Interval (-/+ (s)delta): 0.24000 0.36000

Exact p-value from binomial test for single proportion: 1.00000

Exact CI: Lower Limit 0.19655 Upper Limit 0.41464

Traditional CI: Lower Limit -0.10684 Upper Limit 0.10144

Although the actual proportion for foreign is .297, we do not reject the null hypothesis because of low power; this is
shown by tripling the size of the data set via Stata’s expand command:

. expand 3

(148 observations created)

. equip foreign=.3

Westlake version of test of Equivalence:

test1: 1.868 p-value: 0.0309

test2: -2.044 p-value: 0.0205

Confidence Interval: Lower Limit -0.05316 Upper Limit 0.04776

Exact Westlake CI: Lower Limit 0.24685 Upper Limit 0.35185

Equivalence Interval (-/+ (s)delta): 0.24000 0.36000

Exact p-value from binomial test for single proportion: 1.00000

Exact CI: Lower Limit 0.23807 Upper Limit 0.36215

Traditional CI: Lower Limit -0.06283 Upper Limit 0.05742
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Note that if we want to compare proportions, we must ensure that we have a number between 0 and 1—this program does
not make this check for you, but will give results that are all missing value indicators (dots) if your “proportion” is illegitimate:

. use auto, clear

(1978 Automobile Data)

. equip foreign=rep78 if rep78==3 | rep78==4

Westlake version of test of Equivalence:

test1: . p-value: .

test2: . p-value: .

Confidence Interval: Lower Limit . Upper Limit .

Equivalence Interval (-/+ (s)delta): -0.05000 0.05000

standard test for comparing proportions:

z = . p-value: .

confidence interval: Lower Limit . Upper Limit .

This problem is solved by recoding the categories to 0/1 as compared to the 3/4 used above:

. gen byte repa=0 if rep78==3

(44 missing values generated)

. replace repa=1 if rep78==4

(18 real changes made)

. equip foreign=repa

Westlake version of test of Equivalence:

test1: -0.208 p-value: 0.5823

test2: -1.563 p-value: 0.0591

Confidence Interval: Lower Limit -0.22209 Upper Limit 0.06669

Equivalence Interval (-/+ (s)delta): -0.05946 0.05946

standard test for comparing proportions:

z = -0.888 p-value: 0.1874

confidence interval: Lower Limit -0.24976 Upper Limit 0.09435

. equip foreign=repa, d(.2)

Westlake version of test of Equivalence:

test1: 1.393 p-value: 0.0818

test2: -3.163 p-value: 0.0008

Confidence Interval: Lower Limit -0.22209 Upper Limit 0.06669

Equivalence Interval (-/+ (s)delta): -0.20000 0.20000

standard test for comparing proportions:

z = -0.888 p-value: 0.1874

confidence interval: Lower Limit -0.24976 Upper Limit 0.09435

. equip foreign=repa, d(.3)

Westlake version of test of Equivalence:

test1: 2.532 p-value: 0.0057

test2: -4.303 p-value: 0.0000

Confidence Interval: Lower Limit -0.22209 Upper Limit 0.06669

Equivalence Interval (-/+ (s)delta): -0.30000 0.30000

standard test for comparing proportions:

z = -0.888 p-value: 0.1874

confidence interval: Lower Limit -0.24976 Upper Limit 0.09435

Also, note the different results from the use of different values for delta.
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sqc1 Estimating process capability indices with Stata

Sutaip L. C. Saw and Teck Wong Soon, National University of Singapore, FAX (011)-65-775-2646

Process capability indices are dimensionless summary measures used in quality control to provide information on the extent
to which a process can produce items which conform to specifications. Kane (1986) discusses a number of such indices. Two
indices in common use are

Cp =
USL� LSL

6�
and Cpk = min(CPL;CPU)

where

CPL =
�� LSL

3�
and CPU =

USL� �

3�

are single specification limit capability indices. In the above formulas, LSL and USL denote lower and upper specification limits
on a quality characteristic whose mean and variance are � and �

2, respectively. The statistic Cp compares the natural tolerance
(6�) of the process with the allowable spread (USL�LSL). The statistic Cpk, on the other hand, compares the distance between
the process mean and the nearest specification limit with half the natural tolerance. Large values of these indices are desirable,
since they signify conformance to specifications and, hence, a capable process.

Point estimation

pciest calculates estimates of Cp and Cpk given user-supplied estimates of � and � together with one or both of the
specification limits. The syntax to calculate Cp and Cpk is

pciest mean sd, f(#) s(#)

where mean and sd are estimates of � and �, respectively. f(#) and s(#) are the first (lower) and second (upper) specification
limits.

The syntax to calculate CPL or CPU is

pciest mean sd, f(#) t(fl j ug)

The single specification limit is indicated by f(#). The t() option indicates whether the lower (t(l)) or upper (t(u))
specification limit is indicated by f(#).

Example

In this example, we use a subset of the data found on page 259 of DeVor, Chang, and Sutherland (1992). This data set
consists of coded measurements of the inside diameter of machined cylinder bores. The data set contains 35 samples with 5
measurements per sample. The lower and upper specification limits are 195 and 203, respectively.

We begin by reading the measurements into Stata and estimating the process mean and standard deviation.

. infile x using cylinder.dat

(155 observations read)

. summarize x

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

x | 155 199.9484 2.902738 194 207

To calculate Cp and Cpk, we issue the command
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. pciest 199.95 2.90, f(195) s(203)

LSL = 195.0000 USL = 203.0000

Cp = 0.4598 Cpk = 0.3506

(LSL+USL)/2 = 199.0000 (USL-LSL)/6 = 1.3333

Mean = 199.9500 Std Dev = 2.9000

p = 0.1904 Yield (%) = 80.9616

pciest reports the specification limits, the midpoint of the specification range, the allowable spread divided by six, estimates
of Cp, Cpk, the mean, standard deviation, fraction nonconforming , and percent yield for a process.

To calculate CPU, we give the command

. pciest 199.95 2.90, f(203) t(u)

USL = 203.0000

CPU = 0.3506

Mean = 199.9500 Std Dev = 2.9000

p = 0.1465 Yield (%) = 85.3537

Similarly, to calculate CPL, we give the command

. pciest 199.95 2.90, f(195) t(l)

LSL = 195.0000

CPL = 0.5690

Mean = 199.9500 Std Dev = 2.9000

p = 0.0439 Yield (%) = 95.6079

Concluding remarks

In order for the process capability indices calculated by pciest to be meaningful, the process being examined must be
under control, and the quality characteristic of interest must be normally distributed. In particular, the estimates of the yield and
of the fraction nonconforming are based on the normality assumption. Stata’s xchart and rchart commands can be used to
check for process control, and the swilk command can be used to test for normality.

We have included a tutorial file, pca.tut, on the STB diskette that demonstrates the use of pciest in combination with
these other Stata commands. pca.tut is written in a style similar to the tutorials that come with Stata. To run this tutorial, type

. do pca.tut
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ssi5.2 Equation solving by Ridders’ method

Tim McGuire, Stata Corporation, FAX 409-696-4601

Gould in sii5 presented an equation solver bisect based on the bisection method. Clearly, with enough effort, we can
always locate a solution to any desired accuracy with this method as long as the function is continuous. But compared with
other methods, the bisection method converges rather slowly. (Mathematicians say it converges linearly.)

Ridders’ method is one which retains most of the advantages of the bisection method—bounding of the solution, robustness—
with considerably faster (superlinear) convergence.

ridder is an extension of bisect that uses the method of Ridders to find solutions to equations. It is also extended to
bound not only the function value, but also the solution value, and to detect nonconvergence.

The syntax of ridder is
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ridder fcnmask = expy from exp0 to exp1
�
tol expt

� �
ltol expl

�
where expy , exp0, exp1, expt, and expl are expressions (but are typically specified as numbers) and where fcnmask is either

(1) an expression containing X

(2) progname
�
args

�
X
�
args

�
returns f exp j macro g name

If one of tol or ltol is omitted, ridder ignores that constraint. tol 1e-6 is assumed if neither tol nor ltol is specified.

Description

ridder finds the value of x such that f(x) = expy or, more precisely

jx� bxj < expt

and
jf(x)� expyj < �

where bx is the exact solution and � = explmax(jexpyj; 1). The search is carried out over the range exp
0
� x � exp

1
. The

function f() may be specified on the command line (first syntax for fcnmask) or as a user-written program (second syntax).

Example 1

Find the value of �2 with 2 degrees of freedom that is just significant at the 5% level.

Stata does not provide the inverse �2 function that could directly answer this question, but it does provide a chiprob(d,x)

function that returns the reverse cumulative for �2 value x with d degrees of freedom. If you type ‘display chiprob(2,3)’,
Stata will respond with .22313017, meaning a �

2 of 3 with 2 degrees of freedom is significant at the 22% level. ‘display
chiprob(2,8)’ results in .01831564, meaning the 1.8% level. Therefore, if we wish to find x such that chiprob(2,x) = .05
we can look for x in the range 3 to 8 (since we know that the function in question is continuous.)

. ridder chiprob(2,X)=.05 from 3 to 8

Find chiprob(2,X)=f() == c=.05, |X_error|<1.000e-06, |f()-c|<.

lower upper weighted

iteration bound f()-c bound f()-c midpoint f()-c

----------------------------------------------------------------------------

0. 3 .1731302 8 -.0316844 5.962029 .0007413

1. 5.962029 .0007413 8 -.0316844 5.992071 -.0000152

2. 5.962029 .0007413 5.992071 -.0000152 5.991465 6.70e-11

3. 5.991465 6.70e-11 5.992071 -.0000152 5.991465 4.16e-17

4. 5.991465 4.16e-17 5.992071 -.0000152 5.991465 -6.94e-17

5. 5.991465 4.16e-17 5.991465 -6.94e-17 5.991465 -6.94e-17

|X_error|<= 1.78e-15

The answer is 5.991465, shown in the last row in the column labeled “weighted midpoint”.

The �6.94e–17 printed to the right of the solution means that chiprob(2; 5.991465) = .05 � 6.94 � 10�17. ridder
stopped iterating when the difference between the true answer and the computed answer fell below 10�6. The actual known
bound is reported under the last line of the table, that is, jx � bxj < 1.78 � 10�15. If we would be satisfied with an answer
yielding a result accurate to 10�3, we would type

. ridder chiprob(2,X)=.05 from 3 to 8 tol 1e-3

Find chiprob(2,X)=f() == c=.05, |X_error|<.001, |f()-c|<.

lower upper weighted

iteration bound f()-c bound f()-c midpoint f()-c

----------------------------------------------------------------------------

0. 3 .1731302 8 -.0316844 5.962029 .0007413

1. 5.962029 .0007413 8 -.0316844 5.992071 -.0000152

2. 5.962029 .0007413 5.992071 -.0000152 5.991465 6.70e-11

3. 5.991465 6.70e-11 5.992071 -.0000152 5.991465 4.16e-17

|X_error|<= .0006067

Similarly, if we wanted a more accurate answer, we could specify a smaller tolerance.

In the event we wish to bound the value of f(x) rather than x, the ltol keyword is provided for that purpose. For example,
if we want jchiprob(2; x)� .05j < 1� 10�5, we would type
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. ridder chiprob(2,X)=.05 from 3 to 8 ltol 1e-5

Find chiprob(2,X)=f() == c=.05, |X_error|<., |f()-c|<.00001

lower upper weighted

iteration bound f()-c bound f()-c midpoint f()-c

----------------------------------------------------------------------------

0. 3 .1731302 8 -.0316844 5.962029 .0007413

1. 5.962029 .0007413 8 -.0316844 5.992071 -.0000152

2. 5.962029 .0007413 5.992071 -.0000152 5.991465 6.70e-11

|X_error|<= .0294355

Finally, if we wish to bound the errors on both x and f(x), we may specify tol and ltol on the same command line.

Example 2

As with bisect, we may write a program to calculate the function. An example program computing the same value as
above is

program define mychi

global S_1 = chiprob(2,`1')

end

The `1' in our program means substitute the first argument here. Typing ‘mychi 3’, for instance, will store the evaluation of
chiprob(2,3) in the global macro S 1. This time, to obtain the solution, we type

. ridder mychi X returns macro S_1 =.05 from 3 to 8

(output omitted )

The output we see will be the same as in our first example. For additional programming examples, see the article by Gould in
sii5.

Saved Results

ridder saves the solution in the global macro S 1.

Methods and Formulas

ridder is a variation of the bisection methods. Recall that the bisection method proceeds by evaluating the function at
the midpoint of each successive interval. In Ridders’ method, an additional step is performed which, in effect, factors out the
function e

Q which transforms the residual function into a straight line. In other words, if x1 and x2 are the endpoints of the
bracketing interval, and xm = (x1 + x2)=2 is the midpoint of the interval, the equation

f(x1)� 2f(xm)e
Q + f(x2)e

2Q = 0

is solved using the quadratic formula to give

e
Q =

f(xm) + sign [f(x2)]
p
f(xm)2 � f(x1)f(x2)

f(x2)

Next, a false position technique is applied to the points (x1; f(x1)),
�
xm; f(xm)e

Q
�
, and

�
x2; f(x2)e

2Q
�

to find a “weighted”
midpoint:

w = xm + (xm � x1)
sign [f(x1)� f(x2)] f(xm)p

f(xm)2 � f(x1)f(x2)

w is the point at which the linearized function intersects the x axis. (We transform the equationF (x) = c into f(x) = F (x)�c = 0
so this is valid.) Since w is guaranteed to lie in the interval (x1; x2), the method brackets the solution. As in the bisection
method, a test is made to determine which side of w the solution lies on, and one of

�
x1; f(x1)

�
or
�
x2; f(x2)

�
is updated

with
�
w; f(w)

�
.

To analyze the convergence rate of a solution-finding algorithm, we examine the change in the known bounds on the solution.
Let �xk be the size of the bracketing interval after the k

th iteration. The bisection method obviously has the relationship

�xk+1 = 0:5�xk

Any method that converges according to the formula

�xk+1 = c�xk; 0 < c < 1



22 Stata Technical Bulletin STB-17

is said to converge linearly. Methods that converge as a higher power

�xk+1 = c(�xk)
p
; 0 < c < 1; p > 1

are said to converge superlinearly. If p = 2, the method is said to be quadratic.

For successive applications of the formula for w above, Ridders’ method is quadratic. In actuality, since the application of
the formula requires two function evaluations

�
f(xm) and f(w)

�
, the method actually has an order of

p
2 = 1.414 : : :.

For a further discussion of Ridders’ method, see Press et al. (1992, 358–359).
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sts5 Detrending with the Hodrick–Prescott filter

Timothy J. Schmidt, Federal Reserve Bank of Kansas City, 816-881-2307

hpfilter smooths a time series using the Hodrick–Prescott detrending procedure.

The syntax of hpfilter is

hpfilter varname
�
if exp

� �
in range

�
, lambda(#) suffix(newvar)

hpfilter smooths the series varname and stores the smoothed values in the new series H.newvar.

Options

lambda(#) specifies the value for �, the smoothing parameter. The default is 1600, the value suggested by Prescott (1986) for
quarterly data. Higher values of lambda remove more fluctuation from the data.

suffix(newvar) allows the user to specify a portion (the suffix) of the name for the series that contains the new smoothed
values; the series name would be H.newvar. If this option is not used, the name for the new series would be H.varname
where varname is the time series to be smoothed.

Discussion

Researchers who work with time series data know that the fluctuations evident in the series can be the result of seasonal,
cyclical, random or trend factors. For research purposes it is often desirable to separate a series’ underlying trend from its other
components. The process of isolating the trend component from a time series is known as “smoothing” the series.

All smoothing procedures involve transforming a time series with a class of operators that filter out undesirable elements
(“noise”) while extracting the trend. Many researchers have developed their own class of operators, known as “filters,” to
accomplish this task. One such filter was devised by a team of two economists—Robert Hodrick and Edward Prescott (1981).
The Hodrick–Prescott filter uses a method of constrained optimization to fit the trend path to the time series. In effect, the trend is
the curve that minimizes the sum of squared deviations from the time series subject to the constraint that the sum of the squared
second differences not be too large (Prescott 1986). The Methods and Formulas section below describes the mathematical form
of the optimization problem.

Given the wide assortment of other available filters, why should one use the Hodrick–Prescott method? The Hodrick–Prescott
filter offers several distinct features that may recommend it in certain situations. First, unlike some filters, the Hodrick–Prescott
technique does not require a stationary time series. Second, the Hodrick–Prescott filter treats the observations at both ends of the
sample differently from the rest of the observations (see the conversion matrix in the Methods and Formulas section). Third, the
Hodrick–Prescott technique allows the user to influence the extent of smoothing through the input of �, the smoothing parameter.
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The user’s choice of � influences the degree to which noise is removed from the time series. Higher values of � result in
the removal of more noise. Since time series with shorter frequencies tend to exhibit more noise, one will generally want to use
a higher value of � for monthly data, for instance, than for annual data. Prescott (1986) suggests a value of 1600 for � when
smoothing quarterly data.

Example

I will illustrate the use of the Hodrick–Prescott filter on a data set that contains monthly observations on the federal funds
interest rate from January 1982 to August 1993.

. use fedfunds

(fed funds rate, 1982:1-1993:8)

. describe

Contains data from fedfunds.dta

Obs: 140 (max= 5119) fed funds rate, 1982:1-1993:8

Vars: 4 (max= 99)

Width: 16 (max= 200)

1. month float %9.0g

2. year float %9.0g

3. date float %9.0g

4. ff float %9.0g federal funds rate, percent

Sorted by: year month

. summarize

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------------

month | 140 6.385714 3.440315 1 12

year | 140 1987.343 3.383777 1982 1993

date | 140 87.79167 3.379883 82 93.58334

ff | 140 7.581583 2.561527 2.8586 14.9914

Figure 1 graphs the federal funds rate and shows the distinct fluctuations evident from month to month.

The Hodrick–Prescott filter is intended to be used on data expressed in logs, so the time series must first be transformed.

. generate ln_ff = log(ff)

Now the log of the federal funds rate is smoothed using the Hodrick–Prescott filter. One can investigate the filter’s sensitivity to
the smoothing parameter by generating a couple versions of the smoothed fed funds rate, each with a different value of �. I will
choose values of 800 and 3200 for �. A value of 800 has been used by some researchers in smoothing annual data (Hakkio,
Rush, and Schmidt 1993), and a value of 3200 might be reasonable for monthly data since Prescott (1986) suggests a value of
1600 for quarterly data.

. hpfilter ln_ff, lambda(800) suffix(ff_8)

. hpfilter ln_ff, lambda(3200) suffix(ff_32)

. describe

Contains data from fedfunds.dta

Obs: 140 (max= 5098) fed funds rate, 1982:1-1993:8

Vars: 7 (max= 99)

Width: 28 (max= 200)

1. month float %9.0g

2. year float %9.0g

3. date float %9.0g

4. ff float %9.0g federal funds rate, percent

5. ln_ff float %9.0g

6. H.ff_8 float %9.0g

7. H.ff_32 float %9.0g

Sorted by: year month

Note: Data has changed since last save

Notice that the variable names for the new smoothed series begin with “H.” Finally, the scale of the original series is restored
by exponentiating the smoothed series.

. replace H.ff_8 = exp(H.ff_8)

(140 real changes made)

. replace H.ff_32 = exp(H.ff_32)

(140 real changes made)

Figure 2 below depicts the original federal funds rate series and the smoothed federal funds rate series. Note that the series
became more smoothed as the value of � increased.
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Methods and Formulas

To obtain the smoothed series St, from time series Yt, the Hodrick–Prescott method solves the following constrained
optimization problem:

min
TX
t=1

(Yt � St)
2 + �

T�1X
t=2

[(St+1 � St)� (St � St�1)]
2

It can be shown that the general solution to this problem is the product of a symmetric, band-diagonal matrix and the
unsmoothed time series. Therefore, the fastest and most efficient way to apply the Hodrick–Prescott filter to a time series is to
employ a little matrix algebra, a task to which the new version 3.1 of Stata is well suited. hpfilter uses Stata’s new matrix
programming features to construct the conversion matrix, adapting it to the situation at hand by incorporating the user’s value
of �.

The conversion matrix is

0BBBBBBBBBBBB@

(1 + �) �2� �

�2� (1 + 5�) �4� �

� �4� (1 + 6�) �4� �

� �4� (1 + 6�) �4� �

. . .
. . .

. . .
. . .

. . .
� �4� (1 + 6�) �4� �

� �4� (1 + 6�) �4� �

� �4� (1 + 5�) �2�
� �2� (1 + �)

1CCCCCCCCCCCCA
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sts6 Approximate p-values for unit root and cointegration tests

Craig S. Hakkio, Federal Reserve Bank of Kansas City, FAX 816-881-2199

Key related concepts in time series analysis are the notions of unit roots and of cointegration. Unfortunately, the most
widely used statistics for testing for unit roots and for cointegration follow non-standard distributions. Thus, until recently, time
series analysts have had to rely on only a few, limited tables of critical values for these test statistics. Using extensive Monte
Carlo analysis, MacKinnon now has developed a low-order polynomial approximation to the asymptotic p-values for these test
statistics. This insert describes tauprob, an ado-file that reports MacKinnon’s approximate p-values. tauprob.ado is available
on the STB-17 distribution diskette.

Background

Most time series techniques are applicable only to stationary variables, that is, variables whose distributions are independent
of time. Many important real-world variables, though, are nonstationary. For example, the U. S. gross domestic product (GDP)
does not have a constant mean; it grows apparently without bound reflecting growth in population, productivity, and the capital
stock. Unbounded variables such as this can be modeled as having a unit root, that is, as following a time series process of the
form

yt = �+ yt�1 + �t (1)

where y is, say, the log of GDP, � is the drift or expected growth rate of GDP, and � is a random disturbance. This type of time
series process is called a random walk with drift. Equivalently, we say that yt has a unit root.

It is not always known in advance that a variable follows a random walk. In this case, equation (1) becomes

yt = �+ �yt�1 + �t (10)

where �1 � � � 1. To test whether y has a unit root (whether � = 1), we rewrite (10) by subtracting yt�1 from both sides of
the equation, that is, we rewrite (10) as

�yt = �+ (�� 1)yt�1 + �t (100)

This equation can be estimated by ordinary least squares. The t-statistic on the parameter (�� 1) is called the Dickey–Fuller
statistic and provides a test of the null hypothesis that (�� 1) = 0 (or, equivalently, that � = 1). The traditional t-statistic for
(�� 1) follows a non-standard distribution. Fuller (1976) provides tables of critical values for the Dickey–Fuller statistic.

Many nonstationary variables are bound together by long-run, equilibrium relationships. For example, GDP and population
are both nonstationary, but the growth of one depends on the growth of the other. If a linear combination of nonstationary
variables is stationary, the variables are said to be cointegrated. (This definition is a bit too broad. See Engle and Granger (1987)
for a formal definition of cointegration.) Intuitively, cointegrated variables cannot drift apart indefinitely.

For simplicity, consider two nonstationary variables, y and x. Engle and Granger suggest a two-step test to determine
whether y and x are cointegrated. The first step is to estimate the equation

yt = �0 + �1xt + �t (2)

by ordinary least squares. If y and x are cointegrated, this regression will recover the long-run relationship between the variables,
that is, the estimates of �0 and �1 will define the stationary linear combination of y and x. As a consequence, the estimated
residual from (2) will be stationary. The second step of the Engle–Granger test is just a Dickey–Fuller test of the hypothesis
that b�t is stationary. This test is carried out by estimating the equation

�b�t = �+ (�� 1)b�t�1 + �t (3)

and checking the t-statistic on (� � 1) against yet another set of critical values. The t-statistic in this regression follows a
different non-standard distribution than the ordinary Dickey–Fuller statistic. Engle and Granger (1987) and Engle and Yoo (1991)
provide tables of critical values for the Engle–Granger test.
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MacKinnon’s method for finding approximate p-values

Programs to calculate the Dickey–Fuller and Engle–Granger statistic appeared in sts2 (Becketti 1992). These programs are
available in the library of time series programs that appears on this issue’s distribution diskette (see sts7 below for details) along
with programs to calculate the Phillips–Perron statistic, an alternative to the Dickey–Fuller statistic. These programs report the
test statistic; users are still required to consult tables of critical values to determine the outcome of the test.

MacKinnon has developed a technique for calculating the p-values of Dickey–Fuller, Phillips–Perron, and Engle–Granger
tests, eliminating the need to consult tables of critical values. The technique is straightforward. MacKinnon used Monte Carlo
methods to construct detailed tables of critical values for these test statistics. Then he fit low order polynomials to these critical
values. These polynomial expansions can be used to calculate approximate asymptotic p-values for a wide range of values of
the test statistics.

MacKinnon’s approximations cover three versions of the test statistic, representing three versions of the Dickey–Fuller
regression (or second-step regression in the Engle–Granger test):

�yt = �0 + (�� 1)yt�1 + �t

�yt = �0 + �1t+ (�� 1)yt�1 + �t

�yt = �0 + �1t+ �2t
2 + (�� 1)yt�1 + �t

(4)

As before, the test statistic, now called the � statistic, is the t-statistic for (�� 1). MacKinnon refers to the � statistics based on
the above equations as �c; �ct; �ctt respectively. The subscripts stand for “constant,” “constant and trend,” and “constant, trend,
and trend squared.”

Lagged values of �yt are often added to the regression when calculating the Dickey–Fuller statistic. These lags serve to
eliminate serial correlation in �t. When lagged values of �yt are included, the test is called the augmented Dickey–Fuller test.
These lags do not affect the asymptotic distribution of � . The Phillips–Perron statistic is robust to serial correlation, so lags are
not included in that test.

MacKinnon’s formula for the p-value of the test statistic has the form

��1(p) = 0 + 1� + 2�
2 + 3�

3 (5)

where �(:) is the cumulative standard normal distribution function and the ’s are the polynomial coefficients determined by
MacKinnon. The values of the ’s depend on the type of Dickey–Fuller regression (constant, constant with trend, or constant
with trend and trend squared), the number of variables considered (1, for a unit root test; 2–6, for a cointegration test), and the
value of � itself. MacKinnon develops a separate set of ’s for small values of p, that is, for values of p close to traditional
cutoffs for significance levels. This separate set of ’s permits greater accuracy in the region of greatest interest.

tauprob: a program to calculate MacKinnon’s p-values

tauprob reports MacKinnon’s approximate asymptotic p-values. The syntax of tauprob is

tauprob f c j ct j ctt g #vars #�

The first argument is a string indicating whether the p-value is for �c, �ct, or �ctt. The second argument is a number between
one and six, inclusive, that indicates the number of variables in the cointegrating relationship. A “1” indicates a unit root test.
The third argument is the value of the � statistic. The p-value is not displayed. Instead, it is stored in the global macro S 1.

Example

As an example, we calculate the Dickey–Fuller test for a unit root in the monthly real exchange rate between the British
pound and the U.S. dollar.

. use e1920, clear

(Exchange rates, 1920-1989)

. describe

Contains data from e1920.dta

Obs: 840 (max= 32766) Exchange rates, 1920-1989

Vars: 14 (max= 99)

Width: 56 (max= 200)

1. year float %9.0g Year

2. month float %9.0g Month

3. date float %9.0g Date
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4. time float %9.0g Time (=1 in January 1920)

5. eeng float %9.0g log(nominal ENG ex rate)

6. eger float %9.0g log(nominal GER ex rate)

7. ecan float %9.0g log(nominal CAN ex rate)

8. efra float %9.0g log(nominal FRA ex rate)

9. eita float %9.0g log(nominal ITA ex rate)

10. qeng float %9.0g log(real ENG ex rate)

11. qger float %9.0g log(real GER ex rate)

12. qcan float %9.0g log(real CAN ex rate)

13. qfra float %9.0g log(real FRA ex rate)

14. qita float %9.0g log(real ITA ex rate)

Sorted by:

qeng is the log of the real pound/dollar exchange rate. We wish to estimate the augmented Dickey–Fuller regression

A(L)�qengt = �0 + (�� 1)qengt�1
+ �t: (6)

where A(L) is a polynomial in the lag operator that indicates the inclusion of lagged values �qeng in the regression. We use
the dif command to calculate D.qeng (� �qengt) and the lag command to calculate L.qeng (� qengt�1

). The findlag

command reports the optimal number of lags of the dependent variable in a regression according to four criteria. (dif, lag, and
findlag are documented in Becketti 1992).

. dif qeng

. lag qeng

. findlag D.qeng L.qeng

RMSE AIC PC SC (obs=830)

---------------------

2 1 1 1

findlag indicates that one lag of D.qeng is probably adequate. (The root-mean-square-error criterion tends to overparam-
eterize equations.) The dickey command (Becketti 1992) reports �c, that is, the t-statistic on (�� 1) from (6). Finally, we use
tauprob to calculate the approximate asymptotic p-value of �c.

. dickey qeng

(obs=834, constant, no trend)

Lags tau

-------------

0 -2.8

1 -3.87

2 -3.65

3 -3.55

4 -3.56

. tauprob c 1 -3.87

. di "$S 1"

.0022671722130163

The p-value is .002 indicating we can reject the null hypothesis of no unit root. In other words, the Dickey–Fuller test indicates
that the real pound/dollar exchange rate is nonstationary. This p-value is consistent with published critical values. According to
the table in Fuller (1976), the 5 percent critical value for �c is �2.88 and the 1 percent critical value is �3.44.

Now we repeat the test, including a trend term in the Dickey–Fuller regression.

. dickey qeng , trend

(obs=834, constant, trend)

Lags tau

-------------

0 -2.87

1 -3.93

2 -3.75

3 -3.65

4 -3.65

. findlag D.qeng L.qeng time

RMSE AIC PC SC (obs=830)

---------------------

2 1 1 1

. tauprob ct 1 -3.93

. di "$S 1"

.0110292682884601
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The inclusion of a trend weakens somewhat the evidence of nonstationarity: the test is still significant at the 5 percent level, but
not at the 1 percent level.

As a final check, we can use tauprob to calculate the asymptotic p-value for �c = �2.88 and �c = �3.44. According to
the table in Fuller, the p-values should be .05 and .01, respectively.

. tauprob c 1 -2.88

. di "$S 1"

.0477244706026905

. tauprob c 1 -3.44

. di "$S 1"

.0096688520814145
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sts7 A library of time series programs for Stata

Sean Becketti, Stata Technical Bulletin, FAX 913-888-6708

This insert describes a library of time series ado-files that are available on this issue’s distribution diskette. Some of these
programs were presented in previous inserts. Others were mentioned in previous inserts with a promise of full documentation
in a later insert. And some of these programs are completely new to readers of the STB.

This library is a “snapshot” of my personal directory of time series programs. The programs in this directory are used
heavily by myself, by others at my research institution, and—judging by my mail—by a number of STB readers. This constant
use generates a steady stream of requests for changes, improvements, and extensions in the programs. As a consequence, the
programs are constantly evolving, and, at any given moment, the programs are in various stages of development. Some of them
conform to all Stata standards for estimation routines and are fully debugged and documented. Others have limitations or are
not documented yet.

I intend to include the latest version of this library on the STB distribution diskette from now on. The continual evolution of
these programs has led to a proliferation of versions, many of them incompatible. It has become too difficult to publish updates
of the programs individually. Republishing the entire directory each issue gives readers rapid access to the latest developments
in these programs, and guarantees that the various programs will work together successfully.

Publishing time series programs as a library of ado-files makes sense because time series programs are highly interdependent.
Time series analysis places demands on statistics and data analysis programs that do not occur in cross section or general statistics
problems. The need to design a package around these demands accounts for the continued popularity of specialized time series
programs such as RATS and TSP. The programs described in this insert incorporate a design philosophy that makes it easy to
specify and analyze time series problems in Stata.

This insert has four parts. The first section describes how the time series library provides the basic features needed for time
series analysis. The second section catalogs the user-level routines and indicates their stages of development. The third section
describes the pool of utility programs used by the time series programs. This section is intended for users who wish to modify
these programs or to add new time series programs to Stata. The fourth section discusses areas of future development.
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How to do time series analysis in Stata

Modern time series programs have several features that make it easy to perform time series analysis. Stata, as it comes out
of the shrink-wrap, offers relatively few of these features, and some of the ones it does offer are not in a form that is convenient
for time series analysis. Here we list some of the more important of these features and comment on Stata’s treatment of them.

Time variable: Time series programs provide a way to specify a time index or time variable. In some programs, a predefined
variable (called T or TIME or DATE or : : :) serves as the time index. In other programs, the user can state the frequency
of the data (quarterly, annual, etc.) and the period covered by the data set, and the program checks that the number of
observations matches the number implied by the sample coverage. A different approach is let the user specify the frequency
of the data and the variable or variables that contain the date information.

Stata does not recognize any particular variable or variables as a time index, although it does store the sort order of the
data, which is often the same as the time order. Stata does recognize an absolute time variable, the elapsed-date variable
defined by such commands as mdytoe (see [5d] dates).

Sample coverage: Time series programs routinely display the sample used by a statistical command. It is important in time
series analysis to know the beginning and ending dates of a sample and the number of gaps, if any, in the sample.

Most Stata commands report the number of observations used, but they do not report which observations were used nor do
they report if any observations were skipped, that is, if there were any gaps in the sample.

Displaying dates: Time series programs display date identifiers in listings and graphs in a variety of easy-to-read formats.
Knowing, for example, that data points are typically identified by their dates, rather than by their observation numbers,
influences the design of even the simplest data management commands in a time series package.

Stata offers several commands for converting one date representation to another. For example, etomdy converts an elapsed-
date variable to three variables containing the month, day, and year. These commands can produce readable versions of
date information for listings, although these formats are not readily incorporated in Stata graphs.

Specifying time series models: Time series models are typically parameterized in terms of lag polynomials. For example, a
relatively simple time series regression model is

A(L)yt = �+B(L)xt + �t

where A(L) and B(L) are polynomials in the lag operator L, that is,

A(L) = 1� �1L� �2L
2 � � � � � �pL

p

B(L) = �0 + �1L+ �2L
2 + � � �+ �qL

q

and
Lyt � yt�1

L
k
yt � L

k�1(Lyt)

= yt�k

Modern time series programs make it easy to specify these kinds of models. To estimate the simple regression model above,
for example, users typically need specify only the variables, yt and xt, and the lengths of the lag polynomials, p and q. The
program then creates the needed lags of yt and xt and estimates the regression. The concept of a lag polynomial is fundamental,
since the dynamic properties of the models are determined by functions of the lag polynomials.

Stata has no facilities for lag polynomials or other temporal connections between variables.

Dynamic forecasts: Dynamic forecasts are true ex ante forecasts. Static forecasts understate the uncertainty associated with a
time series forecast. Consider the simplest autoregressive model:

yt = �yt�1 + �t

The static h-period-ahead forecast of yt+h is byt+h = b�yt+h�1
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If � is known with certainty, the variance of this forecast is �2� . If � is estimated, the uncertainty of this estimate also must be
taken into account. The dynamic forecast of yt+h is

byt+h = b�byt+h�1

The dynamic forecast adds the uncertainty about the lagged dependent variable to the uncertainty associated with the static
forecast. The difference between the two types of forecast is often very large.

Stata’s predict command provides only static forecasts.

Diagnostic statistics: Time series programs report a host of diagnostic statistics developed especially for time series analysis.

Stata has many commands to calculate diagnostic statistics, but some of the standard time series diagnostics are not included.

Model stability: Time series programs include commands for testing the stability of time series relationships.

Stata offers none of the standard methods for testing the stability of time series relationships.

The library of time series programs provides almost all the features discussed above that are not already provided by Stata.
The first three features—specifying a time variable, displaying sample coverage, and displaying dates—are addressed explicitly
by the programs datevars, period, findsmpl

�
see sts2 (Becketti 1992) and sts4 (Becketti 1993)

�
and implicitly by several of

the other programs. The techniques used by findsmpl for displaying sample coverage add to the date formats already offered
by Stata. findsmpl also reports any gaps in the sample.

The programs in the time series library use a common and convenient syntax for specifying a time series model. The
common form of a time series command is

command-name varlist
�
weight

� �
if exp

� �
in exp

� �
, current(varlist)

lags(#0;
�
#1[; : : :

��
) static(varlist)

�
The three options—current(), lags(), static()—handle most of the details needed to specify a time series regression
model.

current(varlist) identifies variables in the varlist for which a contemporaneous term is to appear in the model. The default is
to include only lagged values of explanatory variables in the model.

lags(#0; [#1[; : : :]]) specifies the number of lags of each of the variables to include in the model. If fewer numbers than
variables are specified, the last number specified is used for the remaining variables. If more numbers than variables are
specified, the excess numbers are ignored.

static(varlist) specifies non-time series variables to include in the model. These variables can also be incorporated by setting
their maximum lag to zero using the lags() option. The static() option provides a more efficient means of incorporating
these variables.

These options are explained at greater length in sts4 (Becketti 1993). A simple example, though, may make them easier to
understand. Imagine we wish to estimate the time series regression

yt = �+ �yt�1 + �0xt + �1xt�1 + �2xt�2 + 1zt�1 + 2zt�2 + �rt + �t

We could create the necessary lags of yt, xt, and zt using either Stata’s generate command or, more conveniently, the lag

command included in the time series library. Then we could estimate the regression using the regress command. A better
alternative is the time series regression command tsfit, also included in the time series library. The command

tsfit y x z, current(x) lags(1,2) static(r)

creates all the lags, estimates and reports the regression, and stores information for use by follow-on time series commands.

To implement these options, the programs in the time series library have adopted the operator convention described in sts2
and sts4 (but see ip5 in this issue for a limitation of this approach). Under this convention, applying the lag operator (lag
program) to the variable x generates a new variable named L.x. The second lag of x is named L2.x and so on. This convention
extends to the use of other operators, such as the difference (D.), growth (G.), and linear-least-squares projection operators (P.)
have been defined. In sts5 in this issue, Schmidt defines the operator H. to be the Hodrick–Prescott smoothing filter.
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In addition to making it easy to specify time series models, the time series library provides tspred, a command for
calculating dynamic forecasts. tspred can also calculate the static forecasts provided by Stata’s predict command.

Diagnostic statistics are provided by ac, coint, dickey, findlag, pac, regdiag, and xcorr. These programs are
described briefly in the next section. Perhaps the most important of them is regdiag, a general utility for calculating regression
diagnostics including time series diagnostics.

Some of the time series diagnostics calculated by regdiag are useful for detecting model instability. The programs chow,
cusum, and quandt provide formal tests of stability.

A catalog of programs

The following table lists the user-level programs in the time series library. Each program’s status is indicated by a letter
grade. An ‘A’ indicates a program that is safe for general use. An ‘A’ program has been documented—in its current form—in
the STB and follows all Stata guidelines for an estimation command, where relevant (see [4] estimate). A ‘B’ program produces
accurate results, but either is not fully documented, not completely compatible with the time series syntax described above, or
not in conformance with the guidelines for an estimation command. Most ‘B’ programs receive that grade because they have
been revised significantly since they were last documented. A ‘C’ program is incomplete in significant ways but can be used
safely by an advanced Stata user. A ‘D’ program has serious deficiencies, however its code may provide a useful model to
advanced Stata users writing their own time series programs. An ‘O’ program is obsolete, that is, it has been superseded by a
newer program. An ‘O’ program is retained if it is still be called by one or two user-level programs. There are currently no ‘D’
or ‘O’ programs.

Command Status Documentation Description

ac A sts1 display autocorrelation plot
chow C — perform Chow test for a shift in regression coefficients
coint B sts2 perform Engle–Granger cointegration test
cusum B — perform CUSUM test of regression stability. (Note: this name

conflicts with Stata’s cusum command for binary variables.)
datevars A sts4 specify date variables
dickey B sts2 perform unit root tests
dif A sts2 generate differences
dropoper A sts2 drop operator variables
findlag B sts2 find optimal lag length
findsmpl B sts4 display sample coverage
growth A sts2 generate growth rates
lag A sts2 generate lags
lead A sts2 generate leads
pac A sts1 display partial autocorrelation plot
pearson A sg5.1 calculate Pearson correlation with p-value
period A sts2 specify period (frequency) of data
quandt B — calculate Quandt statistics for a break in a regression
regdiag B sg20 calculate regression diagnostics
spear A sg5.1 Spearman correlation with p-value
testsum B — test whether the sum of a set of regression coefficients is zero
tsfit A sts4 estimate a time series regression
tsload B — load an ad hoc time series equation into memory
tsmult A sts4 display information about lag polynomials
tspred B — dynamically forecast or simulate a time series regression
tsreg A sts4 combined tsfit, tsmult, and regdiag

xcorr A sts3 calculate cross correlations

For more information on these programs, type “help ts” or “help command-name”.

Utilities for time series analysis

Writing programs for time series analysis presents a variety of challenges. In developing this library of programs, I had to
write a pool of utility programs to interpret the time series options, to generate lags, to manipulate the list of variables in a lag
polynomial, and so on. I recommend that you familiarize yourself with these utilities, if you wish to write your own time series
programs. A list of some of the most frequently used utility programs follows.
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Command Description

ac calculate autocorrelations, standard errors, and Q-statistics
addl “add” a lag operator to a variable name
addop “add” an arbitrary operator to a variable name
getrres calculate recursive residuals for a regression model
inlist determine whether a token appears in a token list
invlist determine whether a varname appears in a varlist
opnum decode the operators (and their powers) in a varname
parsevl parse a varlist to replace abbreviations
subchar replace one character in a string with another
ts meqn parse a time series command and generate lags
ts pars parse a time series command into useful macros

Future developments and call for comments

This library of time series programs is under constant revision and extension. Projects under development include programs
to estimate rolling regressions, to estimate vector autoregressions, and to perform maximum-likelihood tests for cointegration.
Older programs are being revised to bring them up to Stata’s standards for estimation programs. A disadvantage of these constant
revisions is the likelihood of inadvertently introducing errors into the programs. The advantage of constant revision is the ease
and rapidity of fixing these errors. I encourage you to alert me to any errors or inconveniences you find.
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zz3.1 Computerized index for the STB (Update)

William Gould, Stata Corporation, FAX 409-606-4601

In the last issue of the STB, I introduced the STBinformer, a computerized index to every article and program published in
the STB. The command (and entire syntax) to run the STBinformer is stb. Once the program has started, you can get complete
instructions on how to search the index by typing ? for help or ?? for more detailed help.

The version of the STBinformer included on the STB-16 distribution diskette included indices for the first fifteen issues of
the STB. The STB-17 distribution diskette contains an updated version of the STBinformer which includes indices for the first
sixteen issues of the STB. As the original insert stated, I intend to include an updated copy of this computerized index on every
STB diskette. I encourage you to contact me with suggestions for changes and improvements in the program.

Reference
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