
1 The problem of survival analysis

Survival analysis is concerned with analyzing the time to the occurrence of an event.
For instance, we have a dataset in which the times are 1, 5, 9, 20, and 22. Perhaps those
measurements are made in seconds, perhaps in days, but that does not matter. Perhaps
the event is the time until a generator’s bearings seize, the time until a cancer patient
dies, or the time until a person finds employment, but that does not matter either.

For now, we will just abstract the underlying data-generating process and say that
we have some times until an event occurs, and that those times are 1, 5, 9, 20, and 22.
In addition, perhaps we have some covariates (additional variables) that we wish to use
to “explain” these times. So, pretend that we have the following (completely made up)
dataset:

time x
1 3
5 2
9 4

20 9
22 10

Now, what is to keep us from simply analyzing these data using ordinary least-
squares (OLS) linear regression? Why not simply fit the model

timej = β0 + β1xj + εj , εj ∼ N(0, σ2)

for j = 1, . . . , 5, or, alternatively,

ln(timej) = β0 + β1xj + εj , εj ∼ N(0, σ2)

That is easy enough to do in Stata by typing

. regress time x

or

. generate lntime = ln(time)

. regress lntime x

These days, researchers would seldom analyze survival times in this manner, but
why not? Before you answer too dismissively, we warn you that we, the authors, can
think of problems for which this would be a perfectly reasonable model to use.
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1.1 Parametric modeling

The problem with using OLS to analyze survival data lies with the assumed distribution
of the residuals, εj . In linear regression, the residuals are assumed to be distributed
normally, which is to say, time conditional on xj is assumed to follow a normal distri-
bution:

timej ∼ N(β0 + β1xj , σ
2), j = 1, . . . , 5

The simple fact is that the assumed normality of time to an event is unreasonable
for many events. It is unreasonable, for instance, if we are thinking about an event
that has an instantaneous risk of occurring that is constant over time. In that case, the
distribution of time would follow an exponential distribution. It is also unreasonable if
we are analyzing survival times following a particularly serious surgical procedure. In
that case, the distribution might have two modes: many patients die shortly after the
surgery, but if they survive, the disease might be expected to return. One other problem
is that a time to failure is always positive, while theoretically, the normal distribution
is supported on the entire real line. Realistically, however, this fact alone is not enough
to render the normal distribution useless in this context, since σ2 may be chosen (or
estimated) to make the probability of a negative failure time virtually zero.

At its core, survival analysis concerns nothing more than making a substitution for
the normality assumption characterized by OLS with something more appropriate for
the problem at hand.

Perhaps, if you were already familiar with survival analysis, when we asked “why not
linear regression?”, you offered the excuse of right censoring—that in real data we often
do not observe subjects long enough for all of them to fail. In our data, however, there
was no censoring, and really, censoring is just a nuisance. We can fix linear regression
easily enough to deal with right censoring. It goes under the name censored normal
regression, and Stata’s cnreg command can fit such models; see [R] tobit. The real
problem with linear regression in survival applications is with the assumed normality.

Not being already familiar with survival analysis, you might be tempted to use
linear regression in the face of non-normality. Linear regression is known, after all, to
be remarkably robust to deviations from normality, so why not just use it anyway? The
problem is that the distributions for time to an event might be quite dissimilar from the
normal—they are almost certainly nonsymmetric, they might be bimodal, and linear
regression is not robust to these violations.

Substituting a more reasonable distributional assumption for εj leads to parametric
survival analysis.
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1.2 Semiparametric modeling

That results of analyses are being determined by the assumptions and not the data is
always a source of concern, and this leads to a search for methods that do not require
assumptions about the distribution of failure times. That, at first blush, seems hopeless.
With survival data, the key insight into removing the distributional assumption is that,
because events occur at given times, these events may be ordered and the analysis may
be performed using the ordering of the survival times exclusively. Consider our dataset:

time x
1 3
5 2
9 4

20 9
22 10

Examine the failure that occurred at time 1. Let’s ask, “What is the probability of
failure after exposure to the risk of failure for 1 unit of time?” At this point, observation
1 had failed, and the others had not. This reduces the problem to a problem of binary-
outcome analysis,

time x outcome
1 3 1
5 2 0
9 4 0

20 9 0
22 10 0

and it would be perfectly reasonable for us to analyze failure at time = 1 using, say,
logistic regression

= Pr(failure after exposure for 1 unit of time)
= Pr(outcomej = 1)

=
1

1 + exp(−β0 − xjβx)

for j = 1, . . . , 5. This is easy enough to do:

. logistic outcome x

Do not make too much out of our choice of logistic regression—choose the analysis
method you like. Use probit. Make a table. The point is that whatever particular
technique you choose, you could do all your survival analysis using this analyze-the-
first-failure method. It would be a mightily inefficient use of your data, but it would
have the advantage that you would be making no assumptions about the distribution
of failure times. Of course, you would have to give up on the idea of being able to make
predictions conditional on x, but perhaps being able to predict whether failure occurs
at time = 1 would be sufficient.

There is nothing magical about the first death time; we could instead choose to
analyze the second death time, which, it turns out in these data, is time = 5. We could
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ask about the probability of failure, given exposure of 5 units of time, in which case we
would exclude the first observation (which failed too early) and fit our logistic regression
model using the second and subsequent observations:

. drop outcome

. generate outcome = cond(time==5,1,0) if time>=5

. logistic outcome x if time>=5

In fact, we could use this same procedure on each of the death times, separately.

Which analysis should we use? Well, there is slightly less information in the second
analysis than in the first (because we have one less observation), and in the third than
in the first two (for the same reason), and so on, so we should choose the first. It is,
however, unfortunate, that we have to choose at all. Could we somehow combine all of
these analyses and constrain the appropriate regression coefficients (say the coefficient
on x) to be the same? The answer is yes, we could, and after some math, that leads
to semiparametric survival analysis and, in particular, to Cox (1972) regression if a
conditional logistic model is fit for each analysis. Conditional logistic models differ from
ordinary logistic models for this example in that for the former we condition on the fact
that we know that outcome==1 for one and only one observation within each separate
analysis.

However, for now we don’t want to get lost in all the mathematical detail. What
is important is that we could have done each of the analyses using whatever binary
analysis method seemed appropriate. By doing so, we could combine them all if we are
sufficiently clever in doing the math, and since each of the separate analyses made no
assumption about the distribution of failure times, the combined analysis also makes
no such assumption.

That last statement is rather slippery, so it does not hurt to verify its truth. We
have been considering the data,

time x
1 3
5 2
9 4

20 9
22 10

but now consider two variations on the data:

time x
1.1 3
1.2 2
1.3 4

50.0 9
50.1 10

and
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time x
1 3

500 2
1000 4
10000 9

100000 10

These two alternatives have dramatically different distributions for time yet have the
same temporal ordering and the same values of x. Think about performing the individ-
ual analyses on each of these datasets, and you will realize that the results you get will
be exactly the same. Time plays no role other than ordering the observations.

The methods described above go under the name semiparametric analysis because,
as far as time is concerned, they are nonparametric, but since we are still parameterizing
the effect of x, there exists a parametric component to the analysis.

1.3 Nonparametric analysis

Semiparametric models are parametric in the sense that the effect of the covariates is
still assumed to take a certain form. In the previous section, by performing a separate
analysis at each failure time and concerning ourselves only with the order in which the
failures occurred, we made no assumption about the distribution of time to failure. We
did, however, make an assumption about how each subject’s observed x value deter-
mined the probability that that subject would fail; for example, a probability determined
by the logistic function.

An entirely nonparametric approach would be to do away with this assumption also
and follow the philosophy of “letting the dataset speak for itself”. There exists a vast
literature on performing nonparametric regression using methods such as lowess or local
polynomial regression; however, such methods do not adequately deal with censoring
and other issues unique to survival data.

When no covariates exist, or when the covariates are qualitative in nature (gender,
for instance), we can use nonparametric methods such as Kaplan and Meier (1958) or the
method of Nelson (1972) and Aalen (1978) to estimate the probability of survival past
a certain point in time, or to compare the survival experiences for each gender. These
methods take into account censoring and other characteristics of survival data. There
also exist methods such as the two-sample log-rank test, which can compare the survival
experience across gender by using only the temporal ordering of the failure times. To
wit, nonparametric methods make assumptions about neither (a) the distribution of the
failure times nor (b) how covariates serve to change or shift the survival experience.

1.4 Linking the three approaches

Going back to our original data, consider the individual analyses we performed in order
to obtain the semiparametric (combined) results. The individual analyses were
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Pr(failure after exposure for (exactly) 1 unit of time)
Pr(failure after exposure for (exactly) 5 units of time)
Pr(failure after exposure for (exactly) 9 units of time)
Pr(failure after exposure for (exactly) 20 units of time)
Pr(failure after exposure for (exactly) 22 units of time)

We could omit any of the individual analyses above, and doing so would only affect the
efficiency of our estimators. It is better, though, to include them all, so why not add
the following to this list:

Pr(failure after exposure for (exactly) 1.1 units of time)
Pr(failure after exposure for (exactly) 1.2 units of time)
. . .

That is, why not add individual analyses for all other times between the observed failure
times? That would be a good idea because the more analyses we can combine, the more
efficient our final results will be, which is to say that the standard errors of our estimated
regression parameters will be smaller. The only reason we do not do this is that we
do not know how to say anything about these intervening times—we do not know how
to perform these analyses—unless we make an assumption about the distribution of
failure time. If we made that assumption, we could perform the intervening analyses
(the infinite number of them), and then we could combine them all to get super-efficient
estimates. We could perform the individual analyses themselves a little differently, too,
by taking into account the distributional assumptions, but that would only make our
final analysis even more efficient.

That is the link between semiparametric and parametric analysis. Semiparametric
analysis is nothing more than a combination of separate binary-outcome analyses, one
per failure time, while parametric analysis is a combination of several analyses at all
possible failure times. In parametric analysis, if no failures occur over a particular
interval of time, that is informative. In semiparametric analysis, such periods are not
informative. On the one hand, semiparametric analysis is advantageous in that it does
not concern itself with the intervening analyses, yet parametric analysis will be more
efficient if the proper distributional assumptions are made concerning those times when
no failures are observed.

When no covariates are present, we hope that semiparametric methods such as Cox
regression will produce estimates of relevant quantities (such as the probability of sur-
vival past a certain time) that are identical to the nonparametric estimates, and in fact,
they do. When the covariates are qualitative in nature, parametric and semiparametric
methods should yield more efficient tests and comparisons of the groups determined by
the covariates than nonparametric methods, and these tests should agree. Should the
tests disagree, this would serve as a signal that some of the assumptions made by the
parametric or semiparametric models are incorrect.




